Front Matter: Volume 8313
Medical Imaging 2012

Physics of Medical Imaging

Norbert J. Pelc
Robert M. Nishikawa
Bruce R. Whiting

Editors

5–8 February 2012
San Diego, California, United States

Sponsored by
SPIE

Cosponsored by
Agilent Technologies • Diamond SA (Switzerland) • DQE Instruments, Inc. (Canada)
eMagin (United States) • Isuzu Glass Co., Ltd. (Japan) • Medtronic, Inc. • Ocean Thin Films, Inc.
(United States)

Cooperating Organizations
AAPM—American Association of Physicists in Medicine (United States) • CARS—Computer
Assisted Radiology and Surgery (Germany) • Medical Image Perception Society (United
States) • Radiological Society of North America (United States) • APS—American Physiological
Society (United States) • The DICOM Standards Committee (United States) • Society for
Imaging Informatics in Medicine (United States) • The Society for Imaging Science and
Technology • World Molecular Imaging Society

Published by
SPIE

Part One of Three Parts

Volume 8313

SPIE is an international society advancing an interdisciplinary approach to the science and application of light.
The papers included in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. The papers published in these proceedings reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from this book:

ISSN 1605-7422
ISBN 9780819489623

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time)· Fax +1 360 647 1445
SPIE.org

Copyright © 2012, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center [CCC], 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 1605-7422/12/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model, with papers published first online and then in print and on CD-ROM. Papers are published as they are submitted and meet publication criteria. A unique, consistent, permanent citation identifier [CID] number is assigned to each article at the time of the first publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online, print, and electronic versions of the publication. SPIE uses a six-digit CID article numbering system in which:

- The first four digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A ... 0Z, followed by 10-1Z, 20-2Z, etc.

The CID number appears on each page of the manuscript. The complete citation is used on the first page, and an abbreviated version on subsequent pages. Numbers in the index correspond to the last two digits of the six-digit CID number.
Contents

Part One

xxvii Conference Committee

xxxi Fortieth anniversary of SPIE Medical Imaging meeting (Overview Paper)
R. M. Nishikawa, Carl J. Vyborny Translation Lab. for Breast Imaging Research, The Univ. of Chicago (United States)

SESSION 1 KEYNOTE AND 3D BREAST IMAGING

8313 03 An object-specific and dose-sparing scatter correction approach for a dedicated cone-beam breast CT system using a parallel-hole collimator [8313-02]
K. Yang, G. Burkett, Jr., J. M. Boone, Univ. of California, Davis Medical Ctr. (United States)

8313 04 Potential for cone beam scatter imaging in screening mammography [8313-03]
L. Peerzada, L. Hassan, Univ. at Albany (United States); W. Zhou, Illinois Institute of Technology (United States); C. A. MacDonald, Univ. at Albany (United States)

SESSION 2 3D BREAST IMAGING

8313 05 A fast scatter field estimator for digital breast tomosynthesis [8313-04]
O. Díaz, Univ. of Surrey (United Kingdom); D. R. Dance, K. C. Young, The Royal Surrey County Hospital NHS Trust (United Kingdom) and Univ. of Surrey (United Kingdom); P. Elangovan, Univ. of Surrey (United Kingdom); P. R. Bakic, Univ. of Pennsylvania (United States); K. Wells, Univ. of Surrey (United Kingdom)

8313 06 Optimization of continuous tube motion and step-and-shoot motion in digital breast tomosynthesis systems with patient motion [8313-05]
R. J. Acciavatti, A. D. A. Maidment, The Univ. of Pennsylvania (United States)

8313 07 Optimizing configuration parameters of a stationary digital breast tomosynthesis system based on carbon nanotube x-ray sources [8313-06]
A. Tucker, X. Qian, E. Gidcumb, The Univ. of North Carolina at Chapel Hill (United States); D. Spronk, F. Sprenger, XinRay Systems LLC (United States); J. Kuo, S. Ng, Real-Time Tomography, LLC (United States); J. Lu, O. Zhou, The Univ. of North Carolina at Chapel Hill (United States)

8313 08 Impact of image acquisition timing on image quality for dual energy contrast-enhanced breast tomosynthesis [8313-07]
M. L. Hill, Sunnybrook Research Institute (Canada) and Univ. of Toronto (Canada); J. G. Mainprize, Sunnybrook Research Institute (Canada); S. Puong, A.-K. Carton, R. Iordache, S. Muller, GE Healthcare France (France); M. J. Yaffe, Sunnybrook Research Institute (Canada) and Univ. of Toronto (Canada)
Task-based strategy for optimized contrast enhanced breast imaging: analysis of six imaging techniques for mammography and tomosynthesis [8313-08]
L. Ikejimba, N. Kiarashi, Y. Lin, B. Chen, Duke Univ. Medical Ctr. (United States) and Duke Univ. Medical Ctr. (United States); S. V. Ghate, Duke Univ. Medical Ctr. (United States); M. Zerhouni, Computerized Imaging Reference Systems, Inc. (United States); E. Samei, J. Y. Lo, Duke Univ. Medical Ctr. (United States) and Duke Univ. (United States)

Experimental quantification of lesion detectability in contrast enhanced dual energy digital breast tomosynthesis [8313-09]
Y.-H. Hu, W. Zhao, Stony Brook Univ. (United States)

Comparing human observer performance in detecting microcalcifications with energy weighting and photon counting breast CT [8313-10]
K. Kalluri, Univ. of Massachusetts, Lowell (United States) and Univ. of Massachusetts Medical School (United States); M. Mahd, Univ. of Massachusetts, Lowell (United States); S. J. Glick, Univ. of Massachusetts Medical School (United States)

Development of a dynamic 4D anthropomorphic breast phantom for contrast-based breast imaging [8313-11]
N. Kiarashi, Duke Univ. Medical Ctr. (United States) and Duke Univ. (United States); Y. Lin, Duke Univ. Medical Ctr. (United States); W. P. Segars, Duke Univ. Medical Ctr. (United States) and Duke Univ. (United States); S. V. Ghate, Duke Univ. Medical Ctr. (United States); L. Ikejimba, B. Chen, J. Y. Lo, J. T. Dobbins III, Duke Univ. Medical Ctr. (United States) and Duke Univ. (United States); L. W. Nolte, Duke Univ. (United States); E. Samei, Duke Univ. Medical Ctr. (United States) and Duke Univ. (United States)

Mammogram enhancement using multi-energy x-ray [8313-12]
J.-H. Kwon, H.-H. Oh, S. Kim, Y. Sung, S. Lee, Samsung Advanced Institute of Technology (Korea, Republic of)

Algorithmic scatter correction in dual-energy digital mammography for calcification imaging [8313-13]
X. Chen, Xi'an Jiaotong Univ. (China); R. M. Nishikawa, The Univ. of Chicago (United States); S. Chan, The Hong Kong Polytechnic Univ. (Hong Kong, China); B. A. Lau, The Univ. of Chicago (United States); L. Zhang, The Hong Kong Polytechnic Univ. (Hong Kong, China); X. Mou, Xi'an Jiaotong Univ. (China)

Photon-counting spectral phase-contrast mammography [8313-14]
E. Fredenberg, Royal Institute of Technology (Sweden) and Philips Women's Healthcare (Sweden); E. Roessl, T. Koehler, U. van Stevendaal, Philips Technologie GmbH Innovative Technologies (Germany); I. Schulze-Wenck, N. Wieberneit, Philips Healthcare (Germany); M. Stampanoni, Swiss Light Source, Paul Scherrer Institut (Switzerland) and Institute for Biomedical Engineering, University and ETH Zürich (Switzerland); Z. Wang, Swiss Light Source, Paul Scherrer Institut (Switzerland); R. A. Kubik-Huch, N. Hauser, Kantonsspital Baden (Switzerland); M. Lundqvist, Philips Women's Healthcare (Sweden); M. Danielsson, Royal Institute of Technology (Sweden) and Philips Women's Healthcare (United Kingdom); M. Åslund, Philips Women's Healthcare (Sweden)
SESSION 4 MAMMOGRAPHY

8313 0G Investigation of an active matrix flat-panel imager (AMFPI) employing a thin layer of polycrystalline HgI2 photoconductor for mammographic imaging [8313-15]
H. Jiang, Q. Zhao, Y. El-Mohri, L. E. Antonuk, Univ. of Michigan (United States); T. Gupta, Radiation Monitoring Devices (United States)

8313 0H Effective detective quantum efficiency (eDQE) and effective noise equivalent quanta (eNEQ) for system optimization purposes in digital mammography [8313-16]
E. Salvagnini, UZ Gasthuisberg (Belgium) and SCK-CEN (Belgium); H. Bosmans, UZ Gasthuisberg (Belgium); L. Struelens, SCK-CEN (Belgium); N. W. Marshall, UZ Gasthuisberg (Belgium)

8313 0I Lesion characterization using spectral mammography [8313-17]
B. Norell, Philips Women’s Healthcare (Sweden); E. Fredenberg, Philips Women’s Healthcare (Sweden) and Royal Institute of Technology (KTH) (Sweden); K. Leifland, Capio St Görans Hospital (Sweden); M. Lundqvist, Philips Women’s Healthcare (Sweden); B. Cederström, Philips Women’s Healthcare (Sweden) and Royal Institute of Technology (KTH) (Sweden)

8313 0J Mammographic calcification cluster detection and threshold gold thickness measurements [8313-18]
L. M. Warren, A. Mackenzie, Royal Surrey County Hospital NHS Foundation Trust (United Kingdom); J. Cooke, Jarvis Breast Screening and Diagnostic Ctr. (United Kingdom); R. Given-Wilson, St George’s Healthcare NHS Trust (United Kingdom); M. G. Wallis, Cambridge Breast Unit (United Kingdom) and NIHR Cambridge Biomedical Research Ctr. (United Kingdom); D. P. Chakraborty, Univ. of Pittsburgh (United States); D. R. Dance, K. C. Young, Royal Surrey County Hospital NHS Foundation Trust (United Kingdom) and Univ. of Surrey (United Kingdom)

8313 0K Model-based estimation of breast percent density in raw and processed full-field digital mammography images from image-acquisition physics and patient-image characteristics [8313-19]
B. M. Keller, D. L. Nathan, E. F. Conant, D. Kontos, Univ. of Pennsylvania Perelman School of Medicine (United States)

8313 0L Realistic simulation of breast mass appearance using random walk [8313-20]
A. Rashidnasab, P. Elangovan, Univ. of Surrey (United Kingdom); D. R. Dance, K. C. Young, Univ. of Surrey (United Kingdom) and The Royal Surrey County Hospital NHS Trust (United Kingdom); M. Yip, The Royal Surrey County Hospital NHS Trust (United Kingdom); O. Diaz, K. Wells, Univ. of Surrey (United Kingdom)

SESSION 5 X-RAY IMAGING

8313 0M Improved diagnostic differentiation of renal cystic lesions with phase-contrast computed tomography (PCCT) [8313-21]
P. B. Noël, M. Willner, A. Fingerle, J. Herzen, D. Münzel, D. Hahn, E. J. Rummeny, F. Pfeiffer, Technische Univ. München (Germany)
Small-animal tomography with a liquid-metal-jet x-ray source [8313-22]
D. H. Larsson, U. Lundström, Royal Institute of Technology (Sweden); U. Westermark, Karolinska Institutet (Sweden); P. A. C. Takman, A. Burvall, Royal Institute of Technology (Sweden); M. Arsenian Henriksson, Karolinska Institutet (Sweden); H. M. Hertz, Royal Institute of Technology (Sweden)

Anode thermal analysis of high power microfocus CNT x-ray tubes for in vivo small animal imaging [8313-23]
J. Shan, O. Zhou, J. Lu, The Univ. of North Carolina at Chapel Hill (United States)

Series of 4D adult XCAT phantoms for imaging research and dosimetry [8313-24]
J. Bond, J. Frush, S. Hon, C. Ekersley, C. H. Williams, Duke Univ. Medical Ctr. (United States); J. Feng, D. J. Tward, T. J. T. Ratnanather, M. I. Miller, The Johns Hopkins Univ. (United States); D. Frush, Duke Univ. Medical Ctr. (United States); E. Samei, W. P. Segars, Duke Univ. Medical Ctr. (United States) and Duke Univ. (United States)

New head equivalent phantom for task and image performance evaluation representative for neurovascular procedures occurring in the Circle of Willis [8313-25]
C. N. Ionita, B. Loughran, A. Jain, S. N. Swetadri Vasan, D. R. Bednarek, E. Levy, A. H. Siddiqui, K. V. Snyder, L. N. Hopkins, S. Rudin, Toshiba Stroke Research Ctr., Univ. of Buffalo (United States)

X-ray fluorescence molecular imaging with high sensitivity: feasibility study in phantoms [8313-27]
G. Cao, J. Lu, O. Zhou, The Univ. of North Carolina at Chapel Hill (United States)

Investigations on x-ray luminescence CT for small animal imaging [8313-28]
C. T. Badea, Duke Univ. Medical Ctr. (United States); I. N. Stanton, Duke Univ. (United States); S. M. Johnston, G. A. Johnson, Duke Univ. Medical Ctr. (United States); M. J. Therien, Duke Univ. (United States)

Evaluating the dose effects of a longitudinal micro-CT study on pulmonary tissue in C57BL/6 mice [8313-29]
S. A. Detombe, The Univ. of Western Ontario (Canada) and Robarts Research Institute (Canada); J. Dunmore-Buyze, I. E. Petrov, Robarts Research Institute (Canada); M. Drangova, The Univ. of Western Ontario (Canada) and Robarts Research Institute (Canada)

A liquid xenon detector for PET applications: simulated performance [8313-30]
A. Miceli, TRIUMF (Canada); A. Andreyev, D. Bryman, The Univ. of British Columbia (Canada); J. Glister, L. Kurchaninov, A. Muennich, F. Retiere, TRIUMF (Canada); V. Sossi, The Univ. of British Columbia (Canada)

A comparison of dual kV energy integrating and energy discriminating photon counting detectors for dual energy x-ray imaging [8313-32]
A. S. Wang, N. J. Pelc, Stanford Univ. (United States)
8313 0X First results from a hybrid prototype CT scanner for exploring benefits of quantum-counting in clinical CT [8313-33]
S. Kappler, T. Hannemann, E. Kraft, B. Kreisler, D. Niederloehner, K. Stierstorfer, T. Flohr, Siemens AG Healthcare Sector (Germany)

8313 0Y Evaluation of an ultra-fast photon-counting energy-resolved ASIC for spectral CT [8313-34]
C. Xu, M. Yveborg, H. Chen, M. Danielsson, S. Karlsson, Royal Institute of Technology (Sweden); C. Svensson, Linköping Univ. (Sweden); H. Bornefalk, Royal Institute of Technology (Sweden)

8313 0Z Pulse pileup statistics for energy sensitive photon counting detectors with pulse height analysis [8313-35]
K. Taguchi, S. Srivastava, Q. Tang, B. S. Caffo, The Johns Hopkins Univ. (United States); J. S. Iwanczyk, N. E. Hartsough, W. C. Barber, DxRay, Inc. (United States); J. Cammin, The Johns Hopkins Univ. (United States)

8313 10 Extension of cascaded systems analysis to single-photon-counting x-ray detectors [8313-36]
J. Tanguay, Robarts Research Institute (Canada) and The Univ. of Western Ontario (Canada); S. Yun, Pusan National Univ. (Korea, Republic of); The Univ. of Western Ontario (Canada), and Pusan National Univ. (Korea, Republic of); H. K. Kim, Pusan National Univ. (Korea, Republic of); I. A. Cunningham, Robarts Research Institute (Canada), The Univ. of Western Ontario (Canada), Lawson Health Research Institute (Canada), and London Health Sciences Ctr. (Canada)

8313 11 Spectral response compensation for photon-counting clinical x-ray CT using sinogram restoration [8313-37]
S. Srivastava, J. Cammin, G. S. K. Fung, B. M. W. Tsui, K. Taguchi, The Johns Hopkins Univ. School of Medicine (United States)

8313 12 An empirical method for correcting the detector spectral response in energy-resolved CT [8313-38]
T. G. Schmidt, Marquette Univ. (United States)

SESSION 8 GENERAL RADIOGRAPHY AND FLUOROSCOPY

8313 13 Resolution enhancement of computed radiography images using two orthogonal tilts [8313-39]
S. I. Pollmann, C. J. D. Norley, X. Yuan, Robarts Research Institute (Canada); D. W. Holdsworth, Robarts Research Institute (Canada) and The Univ. of Western Ontario (Canada)

8313 15 A robust approach to measuring the detective quantum efficiency of radiographic detectors in a clinical setting [8313-41]
M. C. McDonald, Robarts Research Institute (Canada) and The Univ. of Western Ontario (Canada); H. K. Kim, Pusan National Univ. (Korea, Republic of); J. R. Henry, London Health Sciences Ctr. (Canada); I. A. Cunningham, Robarts Research Institute (Canada), The Univ. of Western Ontario (Canada), and London Health Sciences Ctr. (Canada)
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>9B</td>
<td>Region-of-interest micro-angiographic fluoroscope detector used in aneurysm and artery stenosis diagnoses and treatment</td>
<td>W. Wang, C. Ionita, Y. Huang, B. Qu, A. Panse, A. Jain, D. R. Bednarek, S. Rudin, Toshiba Stroke Research Ctr., Univ. at Buffalo (United States)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10A</td>
<td>Dose and scatter characteristics of a novel cone beam CT system for musculoskeletal extremities</td>
<td>W. Zbijewski, The Johns Hopkins Univ. (United States); A. Sisniega, J. J. Vaquero, Univ. Carlos III de Madrid (Spain); A. Muhit, The Johns Hopkins Univ. (United States); N. Packard, R. Senn, D. Yang, J. Yorkston, Carestream Health (United States); J. A. Carrino, J. H. Siewerdsen, The Johns Hopkins Univ. (United States)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10B</td>
<td>Low-dose and scatter-free cone-beam CT imaging: a preliminary study</td>
<td>X. Dong, Georgia Institute of Technology (United States); X. Jia, Univ. of California, San Diego (United States); T. Niu, L. Zhu, Georgia Institute of Technology (United States)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10C</td>
<td>Initial results with a multisource inverse-geometry CT system</td>
<td>J. Baek, N. J. Pelc, Stanford Univ. (United States); B. Deman, J. Uribe, D. Harrison, J. Reynolds, B. Neculaes, L. Inzinna, A. Caiafa, GE Global Research Ctr. (United States)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10D</td>
<td>Feasibility study of 3D cardiac imaging using a portable conebeam scanner</td>
<td>I. Petrov, Robarts Research Institute, Univ. of Western Ontario (Canada); P. A. Helm, Medtronic Inc. (United States); M. Drangova, Robarts Research Institute, Univ. of Western Ontario (Canada) and Univ. of Western Ontario (Canada)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Efficacy of fixed filtration for rapid kVp-switching dual energy x-ray systems: experimental verification [8313-51]
Y. Yao, A. S. Wang, N. J. Pelc, Stanford Univ. (United States)

Image-based synthetic CT: simulating arbitrary low dose single and dual energy protocols from dual energy images [8313-52]
A. S. Wang, C. Feng, N. J. Pelc, Stanford Univ. (United States)

Adaptive non-local means filtering based on local noise level for CT denoising [8313-54]
Z. Li, L. Yu, J. D. Trzasko, J. G. Fletcher, C. H. McCollough, A. Manduca, Mayo Clinic (United States)

A method for modulation transfer function determination from blood vessel profiles measured in computed tomography [8313-53]
Y. Nakaya, Shizuoka Cancer Ctr. (Japan); Y. Kawata, N. Niki, Univ. of Tokushima (Japan); H. Ohmatsu, National Cancer Ctr. Hospital East (Japan); N. Moriyama, National Cancer Ctr. Research Ctr. for Cancer Prevention and Screening (Japan)

Theoretical framework for the dual-energy cone-beam CT noise-power spectrum, NEQ, and task-based detectability index [8313-55]
G. J. Gang, Univ. of Toronto (Canada) and The Johns Hopkins Univ. (United States); W. Zbijewski, J. W. Stayman, J. A. Carino, The Johns Hopkins Univ. (United States); J. H. Siewerdsen, Univ. of Toronto (Canada) and The Johns Hopkins Univ. (United States)

CT performance as a variable function of resolution, noise, and task property for iterative reconstructions [8313-56]
B. Chen, Duke Univ. (United States) and Duke Univ. School of Medicine (United States); S. Richard, O. Christianson, Duke Univ. School of Medicine (United States); X. Zhou, Siemens Medical Solutions USA, Inc. (United States); E. Samei, Duke Univ. (United States) and Duke Univ. School of Medicine (United States)

Detection performance study for cone-beam differential phase contrast CT [8313-57]
K. Li, N. Bevins, J. Zambelli, Z. Qi, G.-H. Chen, Univ. of Wisconsin-Madison (United States)

Correlation between model observer and human observer performance in CT imaging when lesion location is uncertain [8313-58]
S. Leng, L. Yu, L. Chen, J. C. Ramirez Giraldo, C. H. McCollough, Mayo Clinic (United States)

Significance of including field non-uniformities such as the heel effect and beam scatter in the determination of the skin dose distribution during interventional fluoroscopic procedures [8313-59]
V. Rana, K. Gill, S. Rudin, D. R. Bednarek, Toshiba Stroke Research Ctr., Univ. at Buffalo (United States)
<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Authors and Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>8313 1O</td>
<td>MCNP simulation of absorbed energy and dose by iodinated contrast agent</td>
<td>W. He, Clemson Univ. (United States); E. Mah, W. Huda, Medical Univ. of South Carolina (United States); H. Yao, Clemson Univ. (United States)</td>
</tr>
<tr>
<td>8313 1P</td>
<td>CTDIvol: a suitable normalization for CT dose conversion coefficients at different tube voltages?</td>
<td>H. Schlattl, M. Zankl, C. Hoeschen, Helmholtz Zentrum München GmbH (Germany)</td>
</tr>
<tr>
<td>8313 1Q</td>
<td>The relationship between organ dose and patient size in tube current modulated adult thoracic CT scans</td>
<td>M. Khatonabadi, D. Zhang, Univ. of California, Los Angeles (United States); J. Yang, Univ. of California, Irvine (United States); J. J. DeMarco, C. C. Cagnon, M. F. McNitt-Gray, Univ. of California, Los Angeles (United States)</td>
</tr>
<tr>
<td>8313 1R</td>
<td>Patient- and cohort-specific dose and risk estimation for abdominopelvic CT: a study based on 100 patients</td>
<td>X. Tian, X. Li, W. P. Segars, D. P. Frush, E. Samei, Duke Univ. Medical Ctr. (United States)</td>
</tr>
</tbody>
</table>

SESSION 13 RECONSTRUCTION I

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Authors and Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>8313 1S</td>
<td>Model-based reconstruction of objects with inexact known components</td>
<td>J. W. Stayman, Y. Otake, S. Schafer, A. J. Khanna, J. L. Prince, J. H. Siewerdsen, The Johns Hopkins Univ. (United States)</td>
</tr>
<tr>
<td>8313 1T</td>
<td>Compensation of nonlinear distortions in photon-counting spectral CT: deadtime loss, spectral response, and beam hardening effects</td>
<td>J. Cammin, S. Srivastava, Q. Tang, The Johns Hopkins Univ. School of Medicine (United States); W. C. Barber, J. S. Iwanczyk, N. E. Hartsough, D'Ray, Inc. (United States); K. Taguchi, The Johns Hopkins Univ. School of Medicine (United States)</td>
</tr>
<tr>
<td>8313 1U</td>
<td>A fully four-dimensional iterative motion estimation and compensation method for cardiac CT</td>
<td>Q. Tang, J. Cammin, S. Srivastava, K. Taguchi, The Johns Hopkins Univ. School of Medicine (United States)</td>
</tr>
<tr>
<td>8313 1V</td>
<td>A new image reconstruction method to improve noise properties in x-ray differential phase contrast computed tomography</td>
<td>K. Li, N. Bevins, J. Zambelli, G.-H. Chen, Univ. of Wisconsin-Madison (United States)</td>
</tr>
<tr>
<td>8313 1W</td>
<td>Investigation of statistical iterative reconstruction for dedicated breast CT</td>
<td>A. Makeev, Univ. of Massachusetts Medical School (United States); M. Das, Univ. of Houston (United States); S. J. Glick, Univ. of Massachusetts Medical School (United States)</td>
</tr>
<tr>
<td>8313 1X</td>
<td>Accelerating ordered-subsets image reconstruction for x-ray CT using double surrogates</td>
<td>J. H. Cho, J. A. Fessler, Univ. of Michigan (United States)</td>
</tr>
</tbody>
</table>
SESSION 14 TOMOSYNTHESIS RECONSTRUCTION

8313 1Y 3D biopsy for tomosynthesis: simulation of prior information based reconstruction for dose and artifact reduction [8313-70]
Y. Lin, S. Ghate, Duke Univ. Medical Ctr. (United States); J. Lo, E. Samei, Duke Univ. Medical Ctr. (United States) and Duke Univ. (United States)

8313 1Z Differential phase contrast tomosynthesis imaging [8313-71]
K. Li, N. Bevins, J. Zambelli, G.-H. Chen, Univ. of Wisconsin-Madison (United States)

8313 20 Generalized filtered back-projection for digital breast tomosynthesis reconstruction [8313-72]
K. Erhard, M. Grass, Philips Research Europe (Germany); S. Hitziger, A. Iske, Univ. of Hamburg (Germany); T. Nielsen, Philips Research Europe (Germany)

8313 21 Effect of postreconstruction filter strength on microcalcification detection at different imaging doses in digital breast tomosynthesis: human and model observer studies [8313-73]
M. Das, Univ. of Houston (United States); C. Connolly, S. J. Glick, Univ. of Massachusetts Medical School (United States); H. C. Gifford, Univ. of Houston (United States)

8313 22 Multiscale regularized reconstruction for enhancing microcalcification in digital breast tomosynthesis [8313-74]
Y. Lu, H.-P. Chan, J. Wei, L. Hadjiiski, C. Zhou, Univ. of Michigan (United States)

Part Two

SESSION 15 RECONSTRUCTION II

8313 23 Exact and efficient computation of noise covariance for fan-beam FBP reconstructions that use rebinning to parallel-beam geometry [8313-75]
A. Wunderlich, F. Noo, The Univ. of Utah (United States)

8313 24 Incorporation of noise and prior images in penalized-likelihood reconstruction of sparse data [8313-76]
Y. Ding, J. H. Siewerdsen, J. W. Stayman, The Johns Hopkins Univ. (United States)

8313 25 A preliminary investigation of reduced-view image reconstruction from low dose breast CT data [8313-77]
J. Bian, X. Han, The Univ. of Chicago (United States); K. Yang, Univ. of California at Davis (United States); E. Y. Sidky, The Univ. of Chicago (United States); J. M. Boone, Univ. of California at Davis (United States); X. Pan, The Univ. of Chicago (United States)

8313 27 Reduced memory augmented Lagrangian algorithm for 3D iterative x-ray CT image reconstruction [8313-79]
M. G. McGaffin, S. Ramani, J. A. Fessler, Univ. of Michigan (United States)
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors and Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>8313 28</td>
<td>Automatic detection of rotational centers using GPU from projection data for micro-tomography in synchrotron radiation</td>
<td>Y. Pan, F. De Carlo, X. Xiao, Argonne National Lab. (United States)</td>
</tr>
<tr>
<td>8313 29</td>
<td>Ring artifact removal for micro-tomography in synchrotron radiation</td>
<td>Y. Pan, F. De Carlo, X. Xiao, Argonne National Lab. (United States)</td>
</tr>
<tr>
<td>8313 2A</td>
<td>An efficient method to estimate noise in computed tomography images</td>
<td>A. Thran, E. Roessl, R. Proksa, Philips Research Labs. (Germany)</td>
</tr>
<tr>
<td>8313 2B</td>
<td>Data normalization method for a multisource inverse geometry CT system</td>
<td>J. Baek, N. J. Pelc, Stanford Univ. (United States)</td>
</tr>
<tr>
<td>8313 2C</td>
<td>Noise reduction for helical computed tomography using coupled projections</td>
<td>Y. Fan, Stony Brook Univ. (United States); J. Ma, Stony Brook Univ. (United States) and Southern Medical Univ. (China); Y. Liu, Stony Brook Univ. (United States); H. Lu, Fourth Military Medical Univ. (China); Z. Liang, Stony Brook Univ. (United States)</td>
</tr>
<tr>
<td>8313 2D</td>
<td>The effect of source position accuracy on image quality in helical MDCT 3D image reconstruction</td>
<td>A. Dhanantwari, Philips Healthcare (United States); Q. Wang, Cornell Univ. (United States); N. Soni, Philips Healthcare (United States)</td>
</tr>
<tr>
<td>8313 2E</td>
<td>4D iterative reconstruction in cardiac CT</td>
<td>H. Bruder, R. Raupach, T. Allmendinger, J. Sunnegårdh, K. Stierstorfer, T. Flohr, Siemens HealthCare (Germany)</td>
</tr>
<tr>
<td>8313 2G</td>
<td>Variance estimation of x-ray CT sinogram in radon domain</td>
<td>J. Ma, Stony Brook Univ. (United States) and Southern Medical Univ. (China); Z. Liang, Y. Fan, Y. Liu, Stony Brook Univ. (United States); J. Huang, Southern Medical Univ. (China); L. Li, College of Staten Island (United States); W. Chen, Southern Medical Univ. (China); H. Lu, Fourth Military Medical Univ. (China)</td>
</tr>
<tr>
<td>8313 2H</td>
<td>Investigation of temporal resolution required for CT coronary angiography</td>
<td>K. Ohashi, Nagoya City Univ. Hospital (Japan) and Kanazawa Univ. (Japan); K. Ichikawa, Kanazawa Univ. (Japan); T. Kawai, Y. Shibamoto, Nagoya City Univ. (Japan)</td>
</tr>
<tr>
<td>8313 2I</td>
<td>Imaging performance in differential phase contrast CT compared with the conventional CT-noise equivalent quanta NEQ(k)</td>
<td>X. Tang, Y. Yang, S. Tang, Emory Univ. School of Medicine (United States)</td>
</tr>
<tr>
<td>8313 2J</td>
<td>Quantification of ring artifact visibility in CT</td>
<td>M. Persson, B. Meyer, H. Bornefalk, M. Danielsson, Royal Institute of Technology (Sweden)</td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>8313 2K</td>
<td>Image quality evaluation of iterative CT reconstruction algorithms: a perspective from spatial domain noise texture measures [8313-92]</td>
<td>J. H. Pachon, Duke Univ. (United States) and Duke Univ. Medical Ctr. (United States); G. Yadava, D. Pal, J. Hsieh, GE Healthcare (United States)</td>
</tr>
<tr>
<td>8313 2L</td>
<td>Modeling scattered radiation from dose compensator in CT by forced detection Monte Carlo simulation [8313-93]</td>
<td>N. Bazargani, R. A. Thompson, Philips Healthcare (United States); Y. Yagil, Philips Healthcare (Israel)</td>
</tr>
<tr>
<td>8313 2M</td>
<td>The CTDOR geometry: an optimized data treatment to demonstrate its potential [8313-94]</td>
<td>C. C. Brunner, Helmholtz Zentrum München GmbH (Germany) and U.S. Food and Drug Administration (United States); O. Tischenko, Helmholtz Zentrum München GmbH (Germany); H. de las Heras, Helmholtz Zentrum München GmbH (Germany) and Quart GmbH (Germany); B. Renger, Klinikum rechts der Isar der Technischen Univ. München (Germany); H. Schlattl, C. Hoeschen, Helmholtz Zentrum München GmbH (Germany)</td>
</tr>
<tr>
<td>8313 2N</td>
<td>Accelerated augmented Lagrangian method for few-view CT reconstruction [8313-95]</td>
<td>J. Wu, X. Mou, Xi’an Jiaotong Univ. (China)</td>
</tr>
<tr>
<td>8313 2O</td>
<td>Relevance of MTF and NPS in quantitative CT: towards developing a predictable model of quantitative performance [8313-96]</td>
<td>B. Chen, S. Richard, E. Samei, Duke Univ. (United States) and Duke Univ. Medical Ctr. (United States)</td>
</tr>
</tbody>
</table>

POSTER SESSION: CONE-BEAM CT

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8313 2P</td>
<td>A new phantom for image quality, geometric distortion, and HU calibration in MSCT and CBCT [8313-97]</td>
<td>J. M. Voigt, Univ. of Applied Sciences (Germany); C. Blendl, M. Selbach, C. Uphoff, Cologne Univ. of Applied Sciences (Germany); M. Fiebich, Univ. of Applied Sciences (Germany)</td>
</tr>
<tr>
<td>8313 2Q</td>
<td>Onboard cone beam CT with flexible image trajectories to improve image quality and longitudinal coverage: simulation and phantom study [8313-98]</td>
<td>D. Yang, J. Tan, H. Li, S. M. Goddu, H. Li, Washington Univ. in St. Louis (United States)</td>
</tr>
<tr>
<td>8313 2R</td>
<td>Investigation of Moiré pattern-based phase retrieval approach for differential phase-contrast cone beam CT imaging using a hospital-grade tube [8313-99]</td>
<td>W. Cai, Univ. of Rochester Medical Ctr. (United States); R. Ning, Univ. of Rochester Medical Ctr. (United States) and Univ. of Rochester (United States); Y. Yu, J. Liu, Univ. of Rochester (United States); D. Conover, Koning Corp. (United States)</td>
</tr>
<tr>
<td>8313 2S</td>
<td>Investigation of source grating stepping for differential phase-contrast cone-beam CT (DPC-CBCT) system [8313-100]</td>
<td>W. Cai, Univ. of Rochester Medical Ctr. (United States); Y. Yu, Univ. of Rochester (United States); R. Ning, Univ. of Rochester Medical Ctr. (United States) and Univ. of Rochester (United States); J. Liu, Univ. of Rochester (United States); D. Conover, Koning Corp. (United States)</td>
</tr>
</tbody>
</table>
Geometric calibration using bundle adjustment for cone-beam computed tomography devices [8313-101]
A. Ladikos, W. Wein, White Lion Technologies AG (Germany)

Assessment of the central artefact in cone beam CT imaging with an offset geometry [8313-102]
G. Zhang, R. Jacobs, J. Nuyts, H. Bosmans, Univ. Hospitals Leuven (Belgium)

Low kV rotational 3D x-ray imaging for improved CNR of iodine contrast agent [8313-103]
D. Schäfer, M. Ahrens, Philips Research (Germany); P. Eshuis, Philips Healthcare (Netherlands); M. Grass, Philips Research (Germany)

POSTER SESSION: CT - MULTI-ENERGY

Development of optimized segmentation map in dual energy computed tomography [8313-104]
K. Yamakawa, H. Ueki, Hitachi, Ltd. (Japan)

Absolute measurement of effective atomic number and electron density using dual-energy computed tomography images [8313-105]

Feasibility study to demonstrate cardiac imaging using fast kVp switching dual-energy computed tomography: phantom study [8313-106]
P. Madhav, Y. Imai, S. Narayanan, S. Dutta, N. Chandra, J. Hsieh, GE Healthcare Systems (United States)

Accurate material quantification in dual energy CT [8313-108]
G. Shechter, Philips Medical Systems Technologies (Israel); A. Thran, Philips Research Labs. (Germany); T. Katchalski, Philips Medical Systems Technologies (Israel)

Iterative image reconstruction in spectral CT [8313-109]

Equal-dose spectral optimization of spectral CT mono-energy photon counting [8313-110]
J. E. Tkaczuk, V. Lobastov, D. D. Harrison, P. Edic., H. Gao, GE Research (United States); D. Rubin, GE Healthcare (Israel)

A comparison of sampling strategies for dual energy micro-CT [8313-111]
X. Guo, Tsinghua Univ. (China) and Duke Univ. Medical Ctr. (United States); S. M. Johnston, G. A. Johnson, C. T. Badea, Duke Univ. Medical Ctr. (United States)

A spectral calibration technique for x-ray CT [8313-112]
S. M. Johnston, C. T. Badea, Ctr. for In Vivo Microscopy, Duke Univ. (United States)

Task based weights for spectral computed tomography [8313-113]
M. Yveborg, M. Danielsson, H. Bornefalk, Royal Institute of Technology (Sweden)
8313 35 Interior tomography with radial Hilbert filtering and a priori information in a small circular area [8313-114]
S. Tang, Y. Yang, X. Tang, Emory Univ. School of Medicine (United States)

8313 36 On the numerical implementation of discrete finite Hilbert transform for image reconstruction [8313-115]
Y. Yang, S. Tang, X. Tang, Emory Univ. School of Medicine (United States)

8313 37 Sampling conditions for gradient-magnitude sparsity based image reconstruction algorithms [8313-116]
E. Y. Sidky, The Univ. of Chicago (United States); J. H. Jørgensen, Technical Univ. of Denmark (Denmark); X. Pan, The Univ. of Chicago (United States)

8313 38 Non-uniform noise spatial distribution in CT myocardial perfusion and a potential solution: statistical image reconstruction [8313-117]
P. Thériault Lauzier, J. Tang, G.-H. Chen, Univ. of Wisconsin-Madison (United States)

8313 39 Acceleration of ML iterative algorithms for CT by the use of fast start images [8313-118]
K. M. Brown, S. Žabić, Philips Healthcare (United States); T. Koehler, Philips Technologie GmbH (Germany)

8313 3A Edge-preserving metal artifact reduction [8313-119]
E. Meyer, Univ. of Erlangen-Nürnberg (Germany) and Siemens Healthcare Forchheim (Germany); R. Raupach, Siemens Healthcare Forchheim (Germany); M. Lell, Univ. of Erlangen-Nürnberg (Germany); B. Schmidt, Siemens Healthcare Forchheim (Germany); M. Kachelrieß, Univ. of Erlangen-Nürnberg (Germany) and German Cancer Research Ctr. (Germany)

8313 3B Metal artifact reduction in x-ray computed tomography by using analytical DBP-type algorithm [8313-120]
Z. Wang, H. Kudo, Univ. of Tsukuba (Japan)

8313 3C Analytical fan-beam reconstruction algorithm for free-form trajectory with plus-minus weighting scheme [8313-121]
Z. Wang, E. A. Rashed, H. Kudo, Univ. of Tsukuba (Japan)

8313 3D General analytical reconstruction formula for fan-beam computed tomography [8313-122]
Z. Wang, H. Kudo, Univ. of Tsukuba (Japan)

8313 3E Ellipse-line-ellipse source trajectory and its R-line coverage for long-object cone-beam imaging with a C-arm system [8313-123]
Z. Yu, The Univ. of Utah (United States) and Univ. of Erlangen-Nürnberg (Germany); F. Noo, The Univ. of Utah (United States); G. Lauritsch, F. Dennerlein, Siemens AG (Germany); J. Hornegger, Univ. of Erlangen-Nürnberg (Germany)

8313 3F Quantitative evaluation of ASIR image quality: an adaptive statistical iterative reconstruction technique [8313-124]
E. Van de Casteele, Univ. of Antwerp (Belgium); P. Parizel, Univ. Hospital Antwerp (Belgium); J. Sijbers, Univ. of Antwerp (Belgium)
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors and Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>3G</td>
<td>Statistical noise reduction with projection space multiscale... [8313-125]</td>
<td>S. Tang, Y. Yang, X. Tang, Emory Univ. School of Medicine (United States)</td>
</tr>
<tr>
<td>3H</td>
<td>Low-dose computed tomography image reconstruction from under-sampling data based on weighted total variation minimization [8313-126]</td>
<td>Y. Liu, Stony Brook Univ. Medical Ctr. (United States); J. Ma, Stony Brook Univ. Medical Ctr. (United States) and Southern Medical Univ. (China); Y. Fan, Z. Liang, Stony Brook Univ. Medical Ctr. (United States)</td>
</tr>
<tr>
<td>3I</td>
<td>Iterative CT reconstruction using shearlet-based regularization [8313-127]</td>
<td>B. Vandeginste, B. Goossens, R. Van Holen, C. Vanhove, A. Plœurca, S. Vandenberghe, Ghent Univ.-IBBT (Belgium); S. Staelens, Ghent Univ.-IBBT (Belgium) and Univ. of Antwerp (Belgium)</td>
</tr>
<tr>
<td>3J</td>
<td>Spatial-temporal total variation regularization (STTVR) for 4D-CT reconstruction [8313-128]</td>
<td>H. Wu, A. Maier, Univ. of Erlangen-Nürnberg (Germany); R. Fahrig, Stanford Univ. (United States); J. Homegger, Univ. of Erlangen-Nürnberg (Germany)</td>
</tr>
<tr>
<td>3K</td>
<td>Comparison between a new reconstruction algorithm (OPED) and filtered backprojection (FBP) for MDCT data [8313-129]</td>
<td>B. Renger, Technische Univ. München (Germany) and Helmholtz Zentrum München GmbH (Germany); P. B. Noël, Technische Univ. München (Germany); O. Tischenko, Helmholtz Zentrum München GmbH (Germany); E. J. Rummeny, Technische Univ. München (Germany); C. Hoeschen, Helmholtz Zentrum München GmbH (Germany)</td>
</tr>
<tr>
<td>3L</td>
<td>System optics in both backprojection and forward projection for model-based iterative reconstruction [8313-130]</td>
<td>I. A. Hein, A. Zamyatin, Toshiba Medical Research Institute USA (United States)</td>
</tr>
<tr>
<td>3O</td>
<td>A preliminary investigation of 3D preconditioned conjugate gradient reconstruction for cone-beam CT [8313-134]</td>
<td>L. Fu, B. De Man, K. Zeng, T. M. Benson, GE Global Research (United States); Z. Yu, G. Cao, J.-B. Thibault, GE Healthcare Technologies (United States)</td>
</tr>
<tr>
<td>3P</td>
<td>Fast-forward projection approach for 3D iterative metal artifact suppression [8313-135]</td>
<td>A. Souza, Carestream Health, Inc. (United States)</td>
</tr>
<tr>
<td>3Q</td>
<td>GPU-based cone-beam reconstruction using wavelet denoising [8313-136]</td>
<td>K. Jin, Korea Institute of Industrial Technology (Korea, Republic of); J. Park, DRGEM Corp. (Korea, Republic of); J. Park, Digital Imaging Tech. (Korea, Republic of)</td>
</tr>
</tbody>
</table>
The 3D CT image reconstruction based on multi-thread scheduling using multi-GPU [8313-137]
Y. Zhu, Y. Zhao, X. Zhao, Capital Normal Univ. (China)

Characterization of adaptive statistical iterative reconstruction (ASIR) in low contrast helical abdominal imaging via a transfer function based method [8313-138]
D. Zhang, X. Li, B. Liu, Massachusetts General Hospital (United States)

POSTER SESSION: RECONSTRUCTION

Anatomy-based PET image reconstruction using nonlocal regularization [8313-140]
V.-G. Nguyen, S.-J. Lee, Paichai Univ. (Korea, Republic of)

SPECT reconstruction with nonuniform attenuation from highly under-sampled projection data [8313-141]
C. Li, J. Wen, K. Zhang, D. Shi, H. Dong, W. Li, Beijing Institute of Technology (China); Z. Liang, Stony Brook Univ. (United States)

Analytical SPECT reconstruction algorithm for helical cone-beam geometry using ray-driven technology [8313-142]
K. Zhang, J. Wen, C. Li, R. Yang, H. Dong, Beijing Institute of Technology (China); Z. Liang, Stony Brook Univ. (United States)

Calculations of a SPECT projection operator on a graphical processing unit [8313-143]
F. Massanes, J. G. Brankov, Illinois Institute of Technology (United States)

Linearization and reconstruction of nonlinear diffuse optical tomographic image [8313-144]
S. K. Biswas, K. Rajan, R. M. Vasu, Indian Institute of Science (India)

An efficient reconstruction method for bioluminescence tomography based on two-step iterative shrinkage approach [8313-145]
W. Guo, K. Jia, Beijing Univ. of Technology (China); J. Tian, Institute of Automation (China); D. Han, Institute of Automation (China) and Northeastern Univ. (China); X. Liu, Northeastern Univ. (China); P. Wu, Institute of Automation (China); J. Feng, Beijing Univ. of Technology (China); X. Yang, Institute of Automation (China)

Effect of iterative reconstruction integrating SART and FBP on photoacoustic imaging [8313-146]
X. Liu, Northeastern Univ. (China); J. Tie, Northeastern Univ. (China) and Institute of Automation (China); D. Han, Institute of Automation (China); W. Guo, Beijing Univ. of Technology (China); D. Peng, Xidian Univ. (China); X. Ma, C. Qin, X. Yang, Institute of Automation (China)

Fast proximity algorithm for MAP ECT reconstruction [8313-147]
S. Li, Sun Yat-Sen Univ. (China); A. Krol, SUNY Upstate Medical Univ. (United States); L. Shen, Syracuse Univ. (United States); Y. Xu, Sun Yat-Sen Univ. (China) and Syracuse Univ. (United States)
Part Three

POSTER SESSION: DOSE

8313 41 Information theoretic discrepancy based iterative reconstruction (IDIR) algorithm for dual energy x-ray systems [8313-148]
K. E. Jang, J. Lee, K. Lee, Y. Sung, S. Lee, Samsung Advanced Institute of Technology (Korea, Republic of)

8313 43 Use of a graphics processing unit (GPU) to facilitate real-time 3D graphic presentation of the patient skin-dose distribution during fluoroscopic interventional procedures [8313-150]
V. Rana, S. Rudin, D. R. Bednarek, Toshiba Stroke Research Ctr., Univ. at Buffalo (United States)

8313 44 Dosimetric consideration for patients with dental filling materials undergoing irradiation of oral cavity using RapidArc: challenges and solution [8313-151]
N. Mail, King Abdullah International Medical Research Ctr. (Saudi Arabia) and National Guard Health Affairs (Saudi Arabia); Y. Albarakati, M. A. Khan, F. Saeedi, N. Safadi, National Guard Health Affairs (Saudi Arabia); S. Al-Ghamdi, A. Saoudi, King Abdullah International Medical Research Ctr. (Saudi Arabia) and National Guard Health Affairs (Saudi Arabia)

8313 45 Radiation dose reduction in computed tomography perfusion using spatial-temporal Bayesian methods [8313-152]
R. Fang, Cornell Univ. (United States); A. Raj, Weill Cornell Medical College (United States); T. Chen, Cornell Univ. (United States); P. C. Sanelli, Weill Cornell Medical College (United States)

8313 47 Diagnostic accuracy at several reduced radiation dose levels for CT imaging in the diagnosis of appendicitis [8313-154]
D. Zhang, M. Khatonabadi, H. Kim, David Geffen School of Medicine at UCLA (United States); M. Jude, Olive View-Univ. of California, Los Angeles Medical Ctr. (United States); E. Zaragoza, David Geffen School of Medicine at UCLA (United States); M. Lee, M. Patel, Olive View-Univ. of California, Los Angeles Medical Ctr. (United States); C. Poon, M. Douek, David Geffen School of Medicine at UCLA (United States); D. Andrews-Tang, Olive View-Univ. of California, Los Angeles Medical Ctr. (United States); L. Doepke, S. McNitt-Gray, C. Cagnon, J. DeMarco, M. McNitt-Gray, David Geffen School of Medicine at UCLA (United States)

8313 48 An investigation of the iterative reconstruction method iDose4 on a Philips CT Brilliance 64 using a Catphan 600 phantom [8313-155]
M.-L. Olsson, Skåne Univ. Hospital Malmö (Sweden); K. Norrgren, Philips Healthcare (Sweden)

8313 49 Dose reduction potential with photon counting computed tomography [8313-156]
X. Wang, A. Zamyatin, D. Shi, Toshiba Medical Research Institute USA (United States)
8313 4A Experimental evaluation of the pile-up trigger method in a revised quantum-counting CT detector [8313-157]
E. Kraft, Siemens AG, Healthcare Sector (Germany); F. Glasser, CEA-LETI-MINATEC (France); S. Kappler, D. Niederloehner, Siemens AG, Healthcare Sector (Germany); P. Villard, CEA-LETI-MINATEC (France)

8313 4B Investigation of ultra low-dose scans in the context of quantum-counting clinical CT [8313-158]
T. Weidinger, T. M. Buzug, Univ. of Luebeck (Germany); T. Flohr, Siemens Healthcare (Germany); G. S. K. Fung, Johns Hopkins Univ. School of Medicine (United States); S. Kappler, K. Stierstorfer, Siemens Healthcare (Germany); B. M. W. Tsui, Johns Hopkins Univ. School of Medicine (United States)

8313 4C Graphics processing unit (GPU) implementation of image processing algorithms to improve system performance of the control acquisition, processing, and image display system (CAPIDS) of the micro-angiographic fluoroscope (MAF) [8313-159]
S. N. Swetadri Vasan, Univ. at Buffalo (United States) and Toshiba Stroke Research Ctr., Univ. at Buffalo (United States); C. N. Ionita, Toshiba Stroke Research Ctr., Univ. at Buffalo (United States); A. H. Titus, A. N. Cartwright, Univ. at Buffalo (United States) and Toshiba Stroke Research Ctr., Univ. at Buffalo (United States); D. R. Bednarek, Toshiba Stroke Research Ctr., Univ. at Buffalo (United States); S. Rudin, Univ. at Buffalo (United States) and Toshiba Stroke Research Ctr., Univ. at Buffalo (United States)

8313 4D An image-based approach to low-dose CT simulation [8313-160]
C. W. Kim, Seoul National Univ. (Korea, Republic of) and Seoul National Univ. College of Medicine (Korea, Republic of); J. H. Kim, Seoul National Univ. College of Medicine (Korea, Republic of)

8313 4E Practical considerations for intensity modulated CT [8313-161]
T. P. Szczykutowicz, C. Mistretta, Univ. of Wisconsin-Madison (United States)

8313 4F Performance investigation of a hospital-grade x-ray tube-based differential phase-contrast cone beam CT system [8313-162]
Y. Yu, Univ. of Rochester (United States); R. Ning, Univ. of Rochester Medical Ctr. (United States) and Univ. of Rochester (United States); W. Cai, Univ. of Rochester Medical Ctr. (United States); J. Liu, Univ. of Rochester (United States); D. Conover, Koning Corp. (United States)

8313 4G Preliminary performance measurements from a second generation diffraction enhanced imaging system [8313-163]
D. M. Connor, E. B. Cole, Medical Univ. of South Carolina (United States); Z. Zhong, Brookhaven National Lab. (United States); C. A. Parham, The Univ. of North Carolina at Chapel Hill (United States); E. D. Pisano, Medical Univ. of South Carolina (United States)

8313 4H Microfabricated instrument tag for the radiographic detection of retained foreign bodies during surgery [8313-164]
A. Tripathi, T. C. Marentis, N. Chronis, Univ. of Michigan (United States)
8313 4I Evaluation of automatic exposure control performance in full-field digital mammography systems using contrast-detail analysis [8313-165]
I. M. Suarez Castellanos, The George Washington Univ. (United States) and U.S. Food and Drug Administration (United States); R. Kaczmarek, C. C. Brunner, U.S. Food and Drug Administration (United States); H. de Las Heras, U.S. Food and Drug Administration (United States) and QUART GmbH (Germany); H. Liu, K. Chakrabarti, U.S. Food and Drug Administration (United States)

8313 4J Shape analysis of simulated breast anatomical structures [8313-166]
F. Contijoch, J. M. Lynch, The Univ. of Pennsylvania (United States); D. D. Pokrajac, Delaware State Univ. (United States); A. D. A. Maidment, P. R. Bakic, The Univ. of Pennsylvania (United States)

8313 4K Dose sensitivity of three methods of image quality assessment in digital mammography [8313-167]
J. Hummel, Medical Univ. of Vienna (Austria) and Wilhelminenspital Vienna (Austria); M. Kaar, R. Hoffmann, Medical Univ. of Vienna (Austria); H. Kaldarar, Wilhelminenspital Vienna (Austria); F. Semturs, P. Homolka, M. Figl, Medical Univ. of Vienna (Austria)

8313 4L Modeling realistic breast lesions using diffusion limited aggregation [8313-168]
A. Rashidnasab, P. Elangovan, Univ. of Surrey (United Kingdom) and NCCPM, Royal Surrey County Hospital (United Kingdom); O. Diaz, K. Wells, Univ. of Surrey (United Kingdom)

8313 4M The effect of breast positioning on breast compression in mammography: a pressure distribution perspective [8313-169]
M. Dustler, Lund Univ. (Sweden); I. Andersson, Skåne Univ. Hospital (Sweden); D. Förnvik, A. Tingberg, Lund Univ. (Sweden)

8313 4N Local spectral adaptive multitaper method with bilateral filtering for spectrum analysis of mammographic images (Cum Laude Poster Award) [8313-170]
G. Wu, Univ. of Toronto (Canada) and Sunnybrook Health Sciences Ctr. (Canada); J. G. Mainprize, Sunnybrook Health Sciences Ctr. (Canada); M. J. Yaffe, Univ. of Toronto (Canada) and Sunnybrook Health Sciences Ctr. (Canada)

8313 4O Design of a contrast-enhanced dual-energy tomosynthesis system for breast cancer imaging [8313-171]
M. D. Hörring, L. Bätz, T. Mertelmeier, Siemens AG Healthcare (Germany)

8313 4P Motion artifacts in dual-energy contrast-enhanced mammography [8313-172]
N. Alliec, Univ. of Waterloo (Canada) and Waterloo Institute for Nanotechnology, Univ. of Waterloo (Canada); S. Abbaszadeh, Univ. of Waterloo (Canada); J. M. Lewin, Diversified Radiology of Colorado Research Institute (United States); K. S. Karim, Univ. of Waterloo (Canada)

8313 4Q Measurement of breast density with digital breast tomosynthesis [8313-173]
B. Ren, A. Smith, Z. Jing, Hologic, Inc. (United States)
Clinical performance evaluation of the prototype digital breast tomosynthesis system
Y. Kim, H. Kim, H. Park, Yonsei Univ. (Korea, Republic of); J. Choi, Y. Choi, Korea
Electrotechnology Research Institute (Korea, Republic of)

A mathematical framework for including various sources of variability in a task-based
assessment of digital breast tomosynthesis
S. Park, A. Badal, U.S. Food and Drug Administration (United States); S. Young, College of
Optical Sciences, Univ. of Arizona (United States); K. J. Myers, U.S. Food and Drug
Administration (United States)

Roadmap for efficient parallelization of breast anatomy simulation
J. H. Chui, The Univ. of Pennsylvania (United States); D. D. Pokrajac, Delaware State Univ.
(United States); A. D. A. Maidment, P. R. Bakic, The Univ. of Pennsylvania (United States)

Partial volume simulation in software breast phantoms
F. Chen, D. Pokrajac, X. Shi, F. Liu, Delaware State Univ. (United States); A. D. A. Maidment,
P. R. Bakic, The Univ. of Pennsylvania (United States)

Dual energy CT-based characterization of x-ray attenuation properties of breast equivalent
material plates
N. Geeraert, GE Healthcare (France) and Katholieke Univ. Leuven (Belgium); R. Klausz,
P. Giudici, S. Muller, GE Healthcare (France); L. Cockmartin, Katholieke Univ. Leuven
(Belgium); H. Bosmans, UZ Leuven (Belgium)

Contrast-to-noise ratio improvement in volume-of-interest cone beam breast CT
Anderson Cancer Ctr. (United States)

Information theoretic discrepancy-based iterative reconstruction (IDIR) algorithm for limited
angle tomography
K. E. Jang, J. Lee, K. Lee, Y. Sung, S. Lee, Samsung Advanced Institute of Technology (Korea,
Republic of)

Wiener filter for filtered back projection in digital breast tomosynthesis
X. Wang, J. G. Mainprize, Sunnybrook Research Institute (Canada); G. Wu, Sunnybrook
Health Sciences Ctr. (Canada); M. J. Yaffe, Sunnybrook Research Institute (Canada) and
Sunnybrook Health Sciences Ctr. (Canada)

Adaptive spatially dependent weighting scheme for tomosynthesis reconstruction
Y. Levakhina, Univ. of Luebeck (Germany) and The Graduate School for Computing in
Medicine and Life Sciences, Univ. of Lubeck (Germany); R. Duschka, F. Vogt, J. Barkhausen,
Univ. Clinics Schleswig-Holstein (Germany); T. M. Buzug, Univ. of Luebeck (Germany)

A stationary digital breast tomosynthesis scanner
X. Qian, A. Tucker, E. Gidcumb, J. Lu, O. Zhou, The Univ. of North Carolina at Chapel Hill
(United States); D. Spronk, F. Sprenger, XinRay Systems, Inc. (United States); Y. Zhang,
D. Kennedy, T. Farbizio, Z. Jing, Hologic, Inc. (United States)
8313 53 A new x-ray scatter reduction method based on frequency division multiplexing x-ray imaging technique [8313-186]
J. Zhang, The Univ. of North Carolina at Chapel Hill (United States) and United Imaging Healthcare (China); S. Chang, J. P. Lu, The Univ. of North Carolina at Chapel Hill (United States); O. Zhou, The Univ. of North Carolina at Chapel Hill (United States) and Lineberger Comprehensive Cancer Ctr., The Univ. of North Carolina at Chapel Hill (United States)

8313 54 Image fusion algorithm for differential phase contrast imaging [8313-188]
E. Roessl, T. Koehler, U. van Stevendaal, G. Martens, Philips Technologie GmbH (Germany); N. Hauser, Kantonsspital Baden (Switzerland); Z. Wang, Paul Scherrer Institut (Switzerland); M. Stampanoni, Paul Scherrer Institut (Switzerland) and Institute for Biomedical Engineering, Univ. and ETH Zürich (Switzerland)

8313 55 Dose reduction by moving a region of interest (ROI) beam attenuator to follow a moving object of interest [8313-189]
A. S. Panse, S. N. Swetadri Vasan, A. Jain, D. R. Bednarek, S. Rudin, Toshiba Stroke Research Ctr., Univ. at Buffalo (United States)

8313 56 Order of magnitude reduction of fluoroscopic x-ray dose [8313-190]
A. Bal, Indian Institute of Technology Kharagpur (India); N. Robert, Sunnybrook Research Institute (Canada); L. Machan, M. Deutsch, IKOMED Technologies Inc. (Canada); D. Kisselgoff, TBRHSC (Canada); P. Babyn, SHR, Saskatoon (Canada); J. A. Rowlands, TBRRI (Canada)

8313 57 Dose reduction technique using a combination of a region of interest (ROI) material x-ray attenuator and spatially different temporal filtering for fluoroscopic interventions [8313-191]
S. N. Swetadri Vasan, Univ. at Buffalo (United States) and Toshiba Stroke Research Ctr., Univ. at Buffalo (United States); A. Panse, A. Jain, Toshiba Stroke Research Ctr., Univ. at Buffalo (United States); P. Sharma, Univ. at Buffalo (United States) and Toshiba Stroke Research Ctr., Univ. at Buffalo (United States); C. N. Ionita, Toshiba Stroke Research Ctr., Univ. at Buffalo (United States); A. H. Titus, A. N. Cartwright, Univ. at Buffalo (United States) and Toshiba Stroke Research Ctr., Univ. at Buffalo (United States); D. R. Bednarek, Toshiba Stroke Research Ctr., Univ. at Buffalo (United States); S. Rudin, Univ. at Buffalo (United States) and Toshiba Stroke Research Ctr., Univ. at Buffalo (United States)

8313 58 Overcoming x-ray tube small focal spot output limitations for high resolution region of interest imaging [8313-192]
S. K. Gupta, A. Jain, D. R. Bednarek, S. Rudin, Toshiba Stroke Research Ctr., Univ. at Buffalo (United States)

8313 59 Adaptive grid artifact reduction in the frequency domain with spatial properties for x-ray images [8313-193]
D. S. Kim, Hankuk Univ. of Foreign Studies (Korea, Republic of); S. Lee, DRTECH Corp. (Korea, Republic of)
8313 5A Two dimensional extensible array configuration for EMCCD-based solid state x-ray detectors [8313-194]
P. Sharma, S. N. Svetadri Vasan, A. N. Cartwright, A. H. Titus, Univ. at Buffalo (United States) and Toshiba Stroke Research Ctr., Univ. at Buffalo (United States); D. R. Bednarek, Toshiba Stroke Research Ctr., Univ. at Buffalo (United States); S. Rudin, Univ. at Buffalo (United States) and Toshiba Stroke Research Ctr., Univ. at Buffalo (United States)

8313 5B Optimization of grating designs for x-ray differential phase contrast imaging [8313-195]
J. Zambelli, K. Li, N. Bevins, G.-H. Chen, Univ. of Wisconsin-Madison (United States)

8313 5C Monte Carlo simulation of photon energy and dose-image quality in x-ray imaging [8313-196]
W. He, Clemson Univ. (United States); E. Mah, W. Huda, Medical Univ. of South Carolina (United States); H. Yao, Clemson Univ. (United States)

8313 5D Optimization of exposure parameters for pediatric chest x-ray imaging [8313-197]
H.-S. Park, Y.-S. Kim, H.-J. Kim, Yonsei Univ. (Korea, Republic of)

8313 5E X-ray imaging using digital cameras [8313-198]
N. M. Winch, Victoria Univ. of Wellington (New Zealand); A. Edgar, Victoria Univ. of Wellington (New Zealand) and MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria Univ. of Wellington (New Zealand)

8313 5F Spectrum optimization of a Talbot-Lau interferometer towards clinical application [8313-199]

8313 5G Feasibility study of the sub-pixel scanning method for single-exposure x-ray refraction imaging by Talbot-Lau interferometer using an a-Se direct conversion type FPD [8313-200]
D. Murakoshi, T. Tada, H. Ishii, A. Hashimoto, Y. Kaneko, W. Ito, T. Agano, FUJIFILM Corp. (Japan)

8313 5H DynAMITe: a prototype large area CMOS APS for breast cancer diagnosis using x-ray diffraction measurements [8313-201]
A. Konstantinidis, Univ. College London (United Kingdom); T. Anaxagoras, Univ. of Lincoln (United Kingdom); M. Esposito, Univ. of Surrey (United Kingdom); N. Allinson, Univ. of Lincoln (United Kingdom); R. Speller, Univ. College London (United Kingdom)

8313 5I Spectroscopic dark-field imaging using a grating-based Talbot-Lau interferometer [8313-202]

8313 5J X-ray phase contrast angiography using CO2 as contrast agent [8313-203]
U. Lundström, D. H. Larsson, KTH Royal Institute of Technology (Sweden); P. A. C. Takman, KTH Royal Institute of Technology (Sweden) and Excillum AB (Sweden); L. Scott, Karolinska Institutet (Sweden); A. Burvall, H. M. Hertz, KTH Royal Institute of Technology (Sweden)
8313 SK Exploration of exposure conditions with a novel wireless detector for bedside digital radiography [8313-204]
H. Bosmans, J. Nens, Univ. Hospitals Leuven (Belgium); L. Delzenne, Univ. de Liège (Belgium);

8313 SL Experimental study of the impact of small-angle scatterers on the x-ray dark field imaging contrast mechanism [8313-205]
N. Bevins, J. Zambelli, K. Li, Z. Qi, G.-H. Chen, Univ. of Wisconsin-Madison (United States)

8313 SM The effect of energy weighting on x-ray imaging based on photon counting detector: a Monte Carlo simulation [8313-206]

8313 SO Performance of a prototype 32x32 pixel indirect x-ray imager based on a lateral selenium passive pixel sensor [8313-208]
R. Keshavarzi, Univ. of Waterloo (Canada); K. Wang, Apple Inc. (United States);
M. Y. Yazdandoost, Teledyne Dalsa Corp. (Canada); K.-W. Shin, F. Chen, S. H. Majid,
S. Abbaszadeh, K. S. Karim, Univ. of Waterloo (Canada)

8313 SP Simulation of presampled MTF measurements in computed radiography for different scan directions [8313-209]
Y. Kawaji, Junshin Gakuen Univ. (Japan); F. Toyofuku, Kyushu Univ. (Japan)

8313 SQ Noise simulation system for determining imaging conditions in digital radiography [8313-210]
R. Tanaka, K. Ichikawa, K. Matsubara, Kanazawa Univ. (Japan); H. Kawashima, Kanazawa Univ. Hospital (Japan)

POSTER SESSION: DETECTORS

8313 SR Novel silicon x-ray detector with TFT readout [8313-211]
K.-W. Shin, Univ. of Waterloo (Canada); K. Wang, Aptina Imaging Corp. (United States);
N. Allec, Y. Fang, K. S. Karim, Univ. of Waterloo (Canada)

8313 SS Spatio-temporal Monte Carlo modeling of a-Se detectors for breast imaging: energy-weighted Swank noise and detective quantum efficiency [8313-212]
Y. Fang, U.S. Food and Drug Administration (United States) and Univ. of Waterloo (Canada);
A. Badal, U.S. Food and Drug Administration (United States); K. S. Karim, Univ. of Waterloo (Canada); A. Badano, U.S. Food and Drug Administration (United States)

8313 ST Improved DQE by means of X-ray spectra and scintillator optimization for FFDM [8313-213]
F. Zoghi, C. A. Tognina, P. G. Roos, Varian Medical Systems, Inc. (United States)

8313 SU Characterization of gated selenium photo detector [8313-214]
S. H. Majid, Univ. of Waterloo (Canada); K. Wang, Apple Inc. (United States); N. Allec,
U. Shafique, K. S. Karim, Univ. of Waterloo (Canada)

8313 SW High performance amorphous selenium lateral photodetector [8313-216]
S. Abbaszadeh, N. Allec, K. S. Karim, Univ. of Waterloo (Canada)
Amorphous selenium photodetector on a flexible substrate for indirect conversion medical imaging [8313-217]
S. Abbaszadeh, S. H. Majid, N. Allec, K. S. Karim, Univ. of Waterloo (Canada)

A study of factors limiting spatial resolution using a 25 micron pixel pitch direct-detection amorphous selenium imaging system [8313-218]
C. C. Scott, N. Allec, K. S. Karim, Univ. of Waterloo (Canada)

Optimization of hardware-based photon rejecter to separate electronic noise in the photon counting detector [8313-219]

POSTER SESSION: IMAGING METHODS

Cutting edge imaging of human cochlea by industrial high resolution computed microtomography [8313-223]
B. Fischer, P. Krüger, Fraunhofer Institute for Non-Destructive Testing (Germany);
A. A. Poznyakovskiy, T. Zahnert, Universitätsklinikum Dresden (Germany)

Development of a pinhole collimator SPECT-CT system using a CdTe detector sample [8313-225]

Optimization of high resolution collimator with CdTe detector: a simulation study [8313-226]

Comparison between pixel array CdTe detector and NaI(Tl) detector for ultra-high resolution small animal SPECT imaging [8313-227]
S. Park, C. Lee, H. Kim, Yonsei Univ. (Korea, Republic of)

Microwave radiometric signatures of temperature anomalies in tissue [8313-229]
P. Kelly, T. Sobers, B. St. Peter, P. Siqueira, Univ. of Massachusetts Amherst (United States);
G. Capraro, Alpert Medical School, Brown Univ. (United States)

Sound field directivity in multi-element synthetic transmit aperture method for ultrasound imaging [8313-230]
Y. Tasinkevych, Z. Kilmonda, M. Lewandowski, I. Trots, A. Nowicki, Institute of Fundamental Technological Research (Poland)

X-ray in-line phase retrieval for tomography [8313-231]
A. Burvall, U. Lundström, Royal Institute of Technology, AlbaNova Univ. Ctr. (Sweden);
P. A. C. Takman, Royal Institute of Technology (Sweden) and Excillum AB (Sweden);
D. H. Larsson, H. M. Hertz, Royal Institute of Technology, AlbaNova Univ. Ctr. (Sweden)

An interior-point method for total variation regularized positron emission tomography image reconstruction [8313-232]
B. Bai, The Univ. of Southern California (United States)
SNR analysis of 3D magnetic resonance tomosynthesis (MRT) imaging [8313-233]
M.-O. Kim, D.-H. Kim, Yonsei Univ. (Korea, Republic of)

Author Index
Conference Committee

Symposium Chairs

Joseph M. Reinhardt, The University of Iowa (United States)
Nico Karssemeijer, Radboud University Nijmegen Medical Center (Netherlands)

Conference Chairs

Norbert J. Pelc, Stanford University (United States)
Robert M. Nishikawa, The University of Chicago (United States)

Conference Cochair

Bruce R. Whiting, University of Pittsburgh (United States)

Program Committee

Hilde Bosmans, UZ Leuven (Belgium)
Guang-Hong Chen, University of Wisconsin-Madison (United States)
Dianna D. Cody, The University of Texas M.D. Anderson Cancer Center (United States)
Mats E. Danielsson, Royal Institute of Technology (Sweden)
Maria Drangova, Robarts Research Institute (Canada)
Thomas G. Flohr, Siemens Medical Solutions GmbH (Germany)
Stephen J. Glick, University of Massachusetts Medical School (United States)
Michael Grass, Philips Technologie GmbH (Germany)
Christoph Hoeschen, Helmholtz Zentrum München GmbH (Germany)
Marc Kachelrieß, German Cancer Research Center (Germany)
Karim S. Karim, University of Waterloo (Canada)
Hee-Joung Kim, Yonsei University (Korea, Republic of)
Despina Kontos, The University of Pennsylvania Health System (United States)
Iacovos S. Kyprianou, U.S. Food and Drug Administration (United States)
Joseph Y. Lo, Duke University Health System (United States)
Jinyi Qi, University of California, Davis (United States)
John A. Rowlands, Thunder Bay Regional Health Sciences Center (Canada)
John M. Sabol, GE Healthcare (United States)
Taly G. Schmidt, Marquette University (United States)
Jeffrey H. Siewerdsen, The Johns Hopkins University (United States)
Anders Tingberg, Scanias University Hospital (Sweden)
John Yorkston, Carestream Health Technology and Innovation Center (United States)

Session Chairs

1 Keynote and 3D Breast Imaging
 Norbert J. Pelc, Stanford University (United States)
 Robert M. Nishikawa, The University of Chicago (United States)

2 3D Breast Imaging
 Hilde Bosmans, UZ Leuven (Belgium)
 Joseph Y. Lo, Duke University (United States)

3 Breast Multi-Energy/Photon Counting
 Mats E. Danielsson, Royal Institute of Technology (Sweden)
 Stephen J. Glick, University of Massachusetts Medical School (United States)

4 Mammography
 Anders Tingberg, Scanias University Hospital (Sweden)
 Despina Kontos, The University of Pennsylvania Health System (United States)

5 X-Ray Imaging
 Hee-Joung Kim, Yonsei University (Korea, Republic of)
 Karim S. Karim, University of Waterloo (Canada)

6 Small Animal Imaging
 John Yorkston, Carestream Health Technology and Innovation Center (United States)
 Maria Drangova, Robarts Research Institute (Canada)

7 Photon Counting Systems and Techniques
 Taly G. Schmidt, Marquette University (United States)
 Jeffrey H. Siewerdsen, The Johns Hopkins University (United States)

8 General Radiography and Fluoroscopy
 John A. Rowlands, Thunder Bay Regional Research Institute (Canada)
 Hee-Joung Kim, Yonsei University (Korea, Republic of)

9 Cone Beam CT
 Iacovos S. Kyprianou, U.S. Food and Drug Administration (United States)
 John Yorkston, Carestream Health Technology and Innovation Center (United States)
10 CT
Dianna D. Cody, The University of Texas M.D. Anderson Cancer Center (United States)
Marc Kachelriess, Friedrich-Alexander-University Erlangen-Nürnberg (Germany)

11 CT Detection Performance
Jinyi Qi, University of California, Davis (United States)
Bruce R. Whiting, University of Pittsburgh (United States)

12 Dose
Christoph Hoeschen, Helmholtz Zentrum München GmbH (Germany)
Dianna D. Cody, The University of Texas M.D. Anderson Cancer Center (United States)

13 Reconstruction I
Guang-Hong Chen, University of Wisconsin School of Medicine and Public Health (United States)
Michael Grass, Philips Technologie GmbH (Germany)

14 Tomosynthesis Reconstruction
John M. Sabol, GE Healthcare (United States)
Iacovos S. Kyprianou, U.S. Food and Drug Administration (United States)

15 Reconstruction II
Jeffrey H. Siewerdsen, The Johns Hopkins University (United States)
Bruce R. Whiting, University of Pittsburgh (United States)
Fortieth Anniversary of SPIE Medical Imaging Meeting

Robert M. Nishikawa*
Carl J. Vyborny Translation Laboratory for Breast Imaging Research
Department of Radiology, and the Committee on Medical Physics, The University of Chicago, 5841 S. Maryland Ave. MC-2026, Chicago, IL 60637

This meeting marked the 40th year from the first SPIE Medical Imaging meeting. This paper presents a brief summary of the 40-year history of the meeting, with an emphasis on the Physics Conference. That is, when the meeting split into multiple conferences, data are presented mostly for the Physics conference only.

The first conference was held in 1972 in Chicago and it was called: Application of Optical Instrumentation in Medicine.

“We have endeavored, by way of the seminar, to provide a communication link between those with expertise in the various technologies associated with image forming devices and those in the medical field who rely on the fruits of these technologies for many of their diagnostic tools...there is a genuine interest among those in the medical field for a better understanding of the fundamental technology of imaging systems.” William C. Zarnstroff, General Chairman

For the next 40 years, with the exception of 1978 the meeting was held annually.

The first 13 conferences were entitled: Application of Optical Instrumentation in Medicine, appended with a roman numeral. The 14th meeting (1986) was modified to recognize the growing importance of PACS to the meeting: Application of Optical Instrumentation in Medicine XIV and Picture Archiving and Communication Systems (PACS IV) for Medical Applications. The following year, the conference name changed to “Medical Imaging” as it is known today, although the first 6 were denoted by roman numerals. Starting in 1993, the year was appended to the title.

The meeting started as a single track, two-day conference, and now has 8 distinct conferences covering five days plus an additional day of courses.

In 1988, the proceedings were published in two volumes, 914A and 914B. The former covering physics, image processing, and perception and the latter display and PACS. The following year (1989) each of those two split in two so that there were now four conferences:

1. Medical Imaging III: Image Formation
2. Medical Imaging III: Image Capture and Display
3. Medical Imaging III: Image Processing
4. Medical Imaging III: PACS System Design and Evaluation

These sessions were partially overlapping and, thus, for the first time, the meeting had parallel session.

This configuration of conferences remained until 1994 when Image Perception and Physiology and Function from Multidimensional Images were added. In 1997, Ultrasonic Transducer Engineering was added. In 2007, Computer-Aided Diagnosis was added.

From 1976 to 1983, the meeting was held in conjunction with or preceding the American Roentgen Ray Society. As a result, the location of the meeting changed annually. Starting in 1985, the meeting was held in Newport Beach, CA, and this was home for the next 10 years, except in 1991, the meeting was held in San Jose in conjunction with the Electronic Imaging meeting. In 1995, the meeting was then moved to San Diego, and then returned once more to Newport Beach, before moving to San Diego till 2009. Since 2009 the meeting has been alternating between San Diego and Lake Buena Vista, FL.

In the Introduction to the proceedings in 1984, Chairman Roger Schneider wrote:

This meeting, the twelfth in the series … was intended to be a change in direction from recent meetings in the series, a reversion to the attack on fundamental problems in imaging which earlier meetings represented. We also desired to bring onto the floor a recognition that the scientific interest in imaging

* r-nishikawa@uchicago.edu| phone: 1-773-702-9047
is more broad and active now than it was a decade ago and that substantial progress has been made in formulating at least the structure of an understanding of the conveyance of information to human observers through imaging channels. ... We recognized the current intense interest in development of medical systems based upon the most contemporary image communication and storage technologies, and included that topic. The design goal was to address the physics and statistics of image encoding by modality; and the processing, display, archiving, management, and psychophysical considerations independently of modality, as far as possible.

It took 2 years for this new emphasis to flourish. Beginning in 1986, the attendance and the number of papers increased rapidly (as can be seen in the plots below).

Finally, it is important to note that every year for the past 40 years, the Center for Devices and Radiological Health, FDA (formerly, the Bureau for Radiological Health) has been a cosponsor or supporting organization. Further, many members of the CDRH/BRH have helped organize the meeting, such as Robert Wagner, Robert Jennings, Roger Schneider, David Brown and several others. Their contributions to this meeting mirror the impact that the CDRH/BRH have had on the field.

![Attendance and Total Number of Papers over Time](image1.png)

![Proceedings Volume Number and # of Conferences over Time](image2.png)

Figure 1. These plots capture some of the statistics from the meeting over time.

1.1 Fun Facts

Bob Wagner dubbed 1984-1987, the Palindrome Years.

The first digital mammography paper and the first dual-energy mammography paper were presented in 1983.

The first computer-aided diagnosis (CAD) paper was presented in 1985.

The first Proceedings (Vol. 35) had a black cover and was hard bound. All subsequent Proceedings had a yellow cover and were soft bound.

The first posters were in 1988. Each poster had 3 full poster boards and wine was served at the poster session.
Although there was no “Medical Imaging” meeting in 1978, there was another medical imaging themed conference: Recent and Future Developments in Medical Imaging I; edited by Norman A. Baily.

In 2001, the proceedings were distributed on CD for the first time.

Table 1. Number of years serving as a Conference Chair (includes all Conferences) or serving on the Physics Committee (including being Chair). Years on Physics Committee includes committee membership when there was only a single conference and only the Physics Committee when there were multiple conferences.

<table>
<thead>
<tr>
<th>Years Served as a Conference Chair</th>
<th>Years Served on Physics Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samuel J. Dwyer III</td>
<td>Robert F. Wagner</td>
</tr>
<tr>
<td>Roger H. Schneider</td>
<td>Hans Roehrig</td>
</tr>
<tr>
<td>R. Gilbert Jost</td>
<td>Martin J. Yaffe</td>
</tr>
<tr>
<td>Yongmin Kim</td>
<td>Robert J. Jennings</td>
</tr>
<tr>
<td>William R. Hendee</td>
<td>Harrison H. Barrett</td>
</tr>
<tr>
<td>Anne V. Clough</td>
<td>Arthur E. Burgess</td>
</tr>
<tr>
<td>Murray H. Loew</td>
<td>James T. Dobbins III</td>
</tr>
<tr>
<td>Joel E. Gray</td>
<td>John M. Boone</td>
</tr>
<tr>
<td>Kenneth M. Hanson</td>
<td>Richard L. Van Metter</td>
</tr>
<tr>
<td>Steven C. Horii</td>
<td>Rodney Shaw</td>
</tr>
<tr>
<td>Arthur G. Haus</td>
<td>Roger H. Schneider</td>
</tr>
<tr>
<td>Elizabeth A. Krupinski</td>
<td>John Yorkston</td>
</tr>
<tr>
<td>Eric A. Hoffman</td>
<td>Kunio Doi</td>
</tr>
<tr>
<td>Harold L. Kundel</td>
<td>Larry E. Antonuk</td>
</tr>
<tr>
<td>K. Kirk Shung</td>
<td>Stephen W. Smith</td>
</tr>
<tr>
<td>Seong K. Mun</td>
<td>Bruce R. Whiting</td>
</tr>
<tr>
<td>William F. Walker</td>
<td>Jacob Beutel</td>
</tr>
<tr>
<td></td>
<td>Arthur G. Haus</td>
</tr>
<tr>
<td></td>
<td>Ian A. Cunningham</td>
</tr>
<tr>
<td></td>
<td>John A. Rowlands</td>
</tr>
<tr>
<td></td>
<td>Judith M. S. Prewitt</td>
</tr>
<tr>
<td></td>
<td>Kenneth M. Hanson</td>
</tr>
<tr>
<td></td>
<td>Michael J. Flynn</td>
</tr>
<tr>
<td></td>
<td>Murray H. Loew</td>
</tr>
<tr>
<td></td>
<td>Robert A. Kruger</td>
</tr>
<tr>
<td></td>
<td>Robert M. Nishikawa</td>
</tr>
<tr>
<td></td>
<td>Samuel J. Dwyer III</td>
</tr>
<tr>
<td></td>
<td>Stephen R. Thomas</td>
</tr>
<tr>
<td></td>
<td>Steven C. Horii</td>
</tr>
<tr>
<td></td>
<td>Thomas G. Flohr</td>
</tr>
</tbody>
</table>

1.2 Summary of Each Meeting

Following is a brief summary of each meeting from 1972-2012. When there were multiple conferences at the meeting, the summary focuses mainly on the Physics Conference. I also have most of this information in an excel spreadsheet. It is available from the author to those who would like it.
Overview of the 40-Year History of the SPIE Medical Imaging Meeting

1972
Application of Optical Instrumentation in Medicine (In-depth-Seminar)
Chicago Nov 29-30
Vol. 35 29 papers Attendance: n/a
Sponsors, Co-Sponsors & Supporting Organizations
SPIE; BRH; ASNR; SMM; UWMS; AAPM
Chairs
William C. Zarnstorff, William R. Hendee, Paul L. Carson
Program Committee
Not listed
Sessions
Electro-Optical Instrumentation - William R. Hendee
Image Analysis, Enhancement and Evaluation - Paul L. Carson
Holographic and Video Images - William R. Hendee
Special Topics - William C. Zarnstorff
Panel Discussion - Jack S. Krohmer

1973
Application of Optical Instrumentation in Medicine II
Chicago Nov 29-30
Vol. 43 35 papers Attendance: n/a
Sponsors, Co-Sponsors & Supporting Organizations
SPIE; AAPM; ASNR; AAMI; BRH EMBG; OSA; SMM; SRE; SPSE;
Chairs
William R. Hendee, William C. Zarnstorff, Paul L. Carson
Program Committee
Not listed
Sessions
Nuclear Medicine Imaging
Image Enhancement and Pattern Recognition
Panel Discussion: Image Enhancement for Medical Diagnosis Can It Be Effective?
Special Topics
Image Intensifier Systems
Transmission, Storage, Retrieval and Reconstruction of Images
Panel Discussion: Performance Standards and Possible Field Evaluation of Image Intensifiers

1974
Application of Optical Instrumentation in Medicine III
Kansas City, MO Aug 1-2
Vol. 47 45 papers Attendance: n/a
Sponsors, Co-Sponsors & Supporting Organizations
SPIE; BRH; AAPM, ARRS; EMBG
Chairs
Paul L. Carson, Edward L. Chaney, William R. Hendee
Program Committee
Not listed
Sessions
Transmission 3-Dimensional Image Reconstruction and Computerized Axial Tomography - William R. Hendee, Joseph Gallagher
Advanced Techniques of Imaging With Ultrasound - Paul L. Carson
Acoustic Exposure Determination In Diagnostic Ultrasound - James A. Rooney
Noise, Objective, and Psychophysical Measures - Joel E. Gray
Special Topics - Jacques Ovadia
Ray Tube Focal Spot Size and Intensity Distributions: Important Practical Considerations - Bengt E. Bjarngard
Automatic Brightness Control In Image-Intensified Fluoroscopy - William R. Hendee

1975
Application of Optical Instrumentation in Medicine IV
Atlanta, GA Sept. 25-27
Vol. 70 55 papers Attendance: n/a
Sponsors, Co-Sponsors & Supporting Organizations
SPIE; BRH; AAPM, ARRS, ACR; SRE
Chairs
Joel E. Gray, William R. Hendee
Program Committee
Not listed
Sessions
Quality Assurance, Film Handling & Film Processing - Joel E. Gray
Loading, Heat Rating, Other Characteristics of X-Ray Tubes - Edward L. Chaney
Information Extraction & Utilization From Radiologic Images - Marvin E. Haskin
Quality Assurance In Diagnostic Radiology: Why Doesn't Every Department Have A Complete Program? Panel Discussion -
Quality Assurance for Diagnostic Radiologic Instrumentation - James J. Vucich
Exposure Initiation/Termination Mechanisms and Automatic Exposure Timers In Diagnostic Radiology - Robert G. Waggener
Rare Earth Intensifying Screens - E. Dale Trol
Panel Discussion: Performance Specifications for Diagnostic Radiologic Equipment - Gray-Scale Ultrasound Imaging & Tissue Identification - Paul L. Carson
Physical Evaluation of Computerized Axial Tomography - Raymond P. Rossi
Special Topics - Robert Rohrer
Performance Evaluation of Mammographic Imaging Systems - Gregory L. Dubuque
1976

Application of Optical Instrumentation in Medicine V
Washington, DC Sept. 16-19
Vol. 96 76 papers Attendance: n/a

Sponsors, Co-Sponsors & Supporting Organizations
SPIE; BRH; ARRS; SRE

Chairs

Program Committee
Same as Editors

Sessions
Quality Assurance in Diagnostic Radiology I - Raymond P. Rossi
Quality Assurance in Diagnostic Radiology II - Thomas Stone
Computed Tomography I - Norman A. Bailey
Radiographic Images and Dose - Arthur G. Haus
Computed Tomography II - Rodney A. Brooks
Computed Tomography III - Kenneth Weaver
Diagnostic Ultrasound I - Paul L. Carson
Quality Assurance in Diagnostic Radiology III - Robert K. Cacak
Current Topics in Mammography - Gregory Dubuque

1977

Application of Optical Instrumentation in Medicine VI
Boston, MA Sept. 25-27
Vol. 127 60 papers Attendance: n/a

Sponsors, Co-Sponsors & Supporting Organizations
SPIE; BRH; ARRS; SRE

Chairs
Joel E. Gray, William R. Hendee

Program Committee
Robert F. Wagner, William Properzio, Arthur G. Haus, Joel Pierce Jones, Raymond Rossi

Sessions
The Laboratory/Clinical Interface in Image Evaluation - Robert Wagner
Sensitometry Up-Date - Joel Gray
Screen Film Systems and Photosensitive Materials - Arthur G. Haus
Approaches to Equipment Service, Equipment Specification and Performance Evaluation - Raymond P. Rossi
New Developments in Medical Imaging - William Hendee
Quality Control in Medical Imaging - William S. Properzio
Performance Characteristics of CT Scanners - Robert K. Cacak
Small Group Sessions on Special Topics - Joint Session with ARRS

1978

No Meeting

1979

Application of Optical Instrumentation in Medicine VII
Toronto, Canada Mar 25-27
Vol. 173 55 papers Attendance: n/a

Sponsors, Co-Sponsors & Supporting Organizations
SPIE; SPSE; ARRS; BRH; SRE

Chairs
Joel E. Gray

Program Committee

Sessions
Imaging Systems: Physical Evaluation - Joel Gray
Imaging Systems: Perception Evaluation - Joel Gray
Imaging Systems: Special Topics - Arthur Haus
Mammography - William Properzio
Special Topics - Raymond Rossi
Computed Tomography: Practical Considerations - William R. Hendee
Computed Tomography: Theoretical Considerations - William R. Hendee
X-Ray Imaging Research in Toronto - K. W. Taylor
Joint Session with the ARRS - Joel Gray; William R. Hendee; Harry Z. Mellins

Downloaded From: https://reviews.spiedigitallibrary.org/conference-proceedings-of-spie on 1/10/2019
Terms of Use: https://reviews.spiedigitallibrary.org/terms-of-use
1980
Application of Optical Instrumentation in Medicine VIII
Las Vegas, NV
Apr 20-22
Vol. 233 45 papers Attendance: n/a
Sponsors, Co-Sponsors & Supporting Organizations
SPIE; SPSE; ARRS; BRH; SRE
Chairs
Joel Gray, Arthur G. Haus, William R. Hendee, William S. Properzio
Program Committee
Same as Editors
Sessions
Screen-Film Evaluation - Arthur G. Haus
Unconventional Imaging Techniques - Joel Gray
Special Topics - Gerald Cohen
New Concepts in Conventional Imaging Techniques - James A. Mulvaney
How Might Exposure Values Be Determined for Radiological Exams? - William S. Properzio
Joint Session with the ARRS - Joel Gray; Joseph Cahoun
1981
Application of Optical Instrumentation in Medicine IX
San Francisco, CA
Mar 22-24
Vol. 273 51 papers Attendance: n/a
Sponsors, Co-Sponsors & Supporting Organizations
SPIE; SPSE; AAPM; ARRS; BRH; SRE
Chairs
Joel E. Gray, Arthur G. Haus, William S. Properzio, James A. Mulvaney
Program Committee
Same as Editors
Sessions
Special Session: Nuclear Magnetic Resonance Imaging: Current Status - Leon Partain; A. Everette James, Jr.
Conventional Imaging Systems Evaluation - Arthur G. Haus
Digital Radiography - William S. Properzio
Quality Control - James A. Mulvaney
Nuclear Medicine - Joel E. Gray
Break-Out Session A: Nuclear Magnetic Resonance - C. Leon Partain
Break-Out Session B: Computed Tomography - Gary D. Fullerton
Break-Out Session C: Digital Imaging - William S. Properzio
Break-Out Session D: Conventional Imaging Systems Evaluation - Joel E. Gray
Joint Session with the ARRS - Arthur G. Haus; James F. Martin
Computerized Tomography - Gary D. Fullerton
Recording, Storage, and Processing of Images - Joel E. Gray
1982
Application of Optical Instrumentation in Medicine X
New Orleans
May 9-12
Vol. 347 58 papers Attendance: 300
Sponsors, Co-Sponsors & Supporting Organizations
SPIE; ARRS; AAPM; BRH; SPSE; SRE
Chairs
Gary D. Fullerton, Arthur G. Haus, William S. Properzio, James A. Mulvaney
Program Committee
Same as Editors
Sessions
Special Session on Digital Radiography - Benjamin A. Arnold; Andrew B. Chummy
Conventional Imaging Systems Evaluation - Arthur G. Haus
Digital Radiography - William S. Properzio
Computed Tomography - James A. Mulvaney
Conventional Imaging Systems Evaluation - Charles A. Kelsey
Break-Out Session A: Digital Radiography - William S. Properzio
Break-Out Session B: Conventional Imaging - James A. Mulvaney
Break-Out Session C: Nuclear Magnetic Resonance (NMR) Imaging - Gary D. Fullerton
Joint Session with the ARRS - John Tampas; Gary D. Fullerton
Digital Radiology (Cosponsored by The ARRS and SPIE) - M. Paul Capp; William R. Hendee
Integrated Systems for Analysis and Display of Radiologic Images - Michael J. Flynn
Nuclear Magnetic Resonance (NMR) Imaging - Raymond L. Namely
Nuclear Magnetic Resonance (NMR) (Cosponsored by ARRS and SPIE) - A. Everette James, Raymond L. Namely
1983
Application of Optical Instrumentation in Medicine XI
Atlanta
Apr 17-20
Vol. 419 41 papers Attendance: 296
Sponsors, Co-Sponsors & Supporting Organizations
SPIE; ARRS; AAPM; BRH SPSE; SRE
Chairs
Gary D. Fullerton
Program Committee
Arthur G. Haus, James A. Mulvaney, William Properzio
Sessions
Advances in Breast Imaging - Roger S. Powell
Conventional Imaging Systems Evaluation - Arthur G. Haus
Digital Radiography I - James A. Mulvaney
Image Performance Evaluation and Quality Assurance - William S. Properzio
Digital Radiography II - Stewart C. Bushong
Break-Out Session A: Nuclear Magnetic Resonance Imaging - Gary D. Fullerton
Break-Out Session B: Digital Radiography - William S. Properzio
Break-Out Session C: Conventional Imaging - James A. Mulvaney
Joint Session with SPIE and The ARRS - Melvin M. Figley; Gary D. Fullerton
New Modalities and Computers in Medical Imaging - Michael J. Flynn
1988
Medical Imaging II: Part A- Image Formation, Detection, Processing, and Interpretation
Newport Beach, CA Jan 31-Feb 5
Vol. 914A 158 papers (102 in Physics) Attendance: 573
Sponsors, Co-Sponsors & Supporting Organizations
SPIE; AAPM; ACR; CDRH; IRS
Chairs
Samuel J. Dwyer III, Roger H. Schneider
Program Committee
Ronald L. Aronson; Gary T. Barnes; Harrison H. Barrett; Roger A. Bauman; Arthur Burgess; Arthur H. Carson; Jerry Cohen; Kunio Doi; Aaron Fenster; Leonard A. Fienk; Kenneth M. Hanson; William R. Hendee; David G. Hill; Steven C. Hori; H. K. Huang; Robert J. Jennings; Robert A. Kruger; Bruce Laslin; James L. Leith; Thomas R. Lewallen; Murray H. Loew; William C. Mortimore; Laura Lee Murphy; Orhan Nalcioglu; Stephen M. Pizer; Judith M.S. Preewll; Ronald R Price; Stephen J Reder; Hans Roehrig; Roger H Shannon; Rodney Shaw; Stephen W. Smith; Edward V. Staab; Stephen R. Thomas; Robert F. Wagner; Henry N. Wagner, Jr.; Jason S. Zielonka
Sessions
Future Potential of the Several Candidate Signals for Medical Imaging - Roger H. Schneider
Image Formation I - Robert F. Wagner / Harrison H. Barrett / Kunio Doi / Robert A. Kruger / Aaron Fenster / Hans Roehrig / Gary T. Barnes
Image Processing I - Arthur Burgess
Image Processing II- Chest and Cardiovascular - Jerry Cohen
Image Processing III- Head and Craniofacial - Kenneth M. Hanson
Image Processing IV- Tomographic and 3D Mapping and Interpretation - Orhan Nalcioglu
Image Processing Microscopy - Judith M. S. Preewll
Digital Medical Photography - Roger A. Bauman
Other Conferences
SPIE Part B- Image Data Management & Display - Samuel J. Dwyer III, Roger H. Schneider

1989
Medical Imaging III: Image Formation
Newport Beach, CA Jan 29-31
Vol. 1000 235 papers (51 in Physics) Attendance: 547
Sponsors, Co-Sponsors & Supporting Organizations
SPIE; AAPM; ACR; CDRH; IRS
Chairs
Samuel J. Dwyer III, R. Gilbert Jost M.D., Roger H. Schneider
Program Committee
Ronald L. Aronson; Harrison H. Barrett; Gary T. Barnes; Roger A. Bauman; David G. Brown; Arthur E. Burgess; Arthur Carson; Gerald Cohen; Kunio Doi; Aaron Fenster; Kenneth M. Hanson; William R. Hendee; David G. Hill; Steven C. Hori; H. K. Huang; Robert J. Jennings; Robert A. Kruger; James L. Leith; Thomas K. Lewellen; Murray R. Loew; Orhan Nalcioglu; Stephen M. Pizer; Judith M. S. Preewll; Ronald R Price; Stephen J Reder; Hans Roehrig; Roger H Shannon; Rodney Shaw; Stephen W. Smith; Eckard Staat; Stephen R. Thomas; Robert F. Wagner
Sessions
Future Potential of the Several Candidate Signals for Medical Imaging - Roger H. Schneider
Image Formation I - Stephen J. Reder
Image Formation II - Robert J. Jennings
Image Formation III - Arthur E. Burgess
Image Formation IV - Robert A. Kruger
Image Formation V - Kunio Doi
Image Formation VI - Ronald R. Price
Other Conferences
Other Conferences

1990
Medical Imaging IV: Image Formation
Newport Beach, CA Feb 4-6
Vol. 1231 270 papers (60 in Physics) Attendance: 686
Sponsors, Co-Sponsors & Supporting Organizations
SPIE; AAPM; ACR; CDRH; NEMA
Chairs
Roger H. Schneider
Program Committee
Ronald L. Aronson; Harrison H. Barrett; Roger A. Bauman; David G. Brown; Arthur E. Burgess; Gerald Cohen; William Dallas; Kunio Doi; Aaron Fenster; Kenneth M. Hanson; David G. Hill; Robert Hendest; Steven C. Hori; H. K. Huang; Robert J. Jennings; R. Gilbert Jost; Yongmin Kim; Robert A. Kruger; Pei-Jan Paul Lin; Murray H. Loew; Richard L. Morin; Seong Ki Mun; Iman Nalcioglu; Thomas R. Nelson; David R. Pickens; Stephen M. Pizer; Judith M. S. Preewll; Hans Roehrig; Roger Schneider, Roger Shannon; Rodney Shaw; Stephen W. Smith; Edward V. Staab; Stephen R. Thomas; Robert F. Wagner...
2011

Medical Imaging 2011: Physics of Medical Imaging

Lake Buena Vista, FL 13–17 February
Vol. 7961 864 papers (204 in Physics) Attendance: 1136

Sponsors, Co-Sponsors & Supporting Organizations
SPIE; AAPM; APS; CARS; IS&T MIPS; RSNA; SIIM; SMI; DICOM

Chairs
Norbert J. Pelc, Ehsan Samei, Robert M. Nishikawa

Program Committee
Guang-Hong Chen; Dianna Cody; Mats Danielsson; Maria Drangova; Thomas Flohr; Stephen J. Glick; Michael Grass; Christoph Hoeschen; Marc Kachelriess; Karim S. Karim; Hee-Joung Kim; Despina Kontos; Iacovos Kyprianou; Jinyi Qi; John A. Rowlands; John M. Sabol; Taly Gilat Schmidt; Jeffrey H. Siewerdsen; Katsuyuki Taguchi; Anders Tingberg; Bruce R. Whiting; John Yorkston;

Sessions
Keynote and Imaging and Health Economics - Norbert J. Pelc; Ehsan Samei
X-ray Imaging - John A. Rowlands; Christoph Hoeschen
Metrology - Robert M. Nishikawa; John Yorkston
Iterative and Statistical Reconstruction - Jinyi Qi; Guang-Hong Chen
Detectors I & II- John Yorkston; John A. Rowlands / Karim S. Karim; Mats Danielsson
Breast Imaging - Anders Tingberg; Stephen J. Glick
Tomosynthesis I: Reconstruction - John M. Sabol; Michael Grass
Tomosynthesis II - Despina Kontos; Anders Tingberg
X-ray Imaging: Phase Contrast Diffraction - Jeffrey H. Siewerdsen; Taly Gilat Schmidt
Image Reconstruction - Bruce R. Whiting; Katsuyuki Taguchi
CT III: Multi-energy - Thomas G. Flohr; John M. Sabol
Novel Systems - Mats Danielsson; Taly Gilat Schmidt
CT IV: Cone Beam - Maria Drangova; Marc Kachelriess
Dose - Iacovos S. Kyprianou; Hee-Joung Kim
Two Special Sessions on Dose with a Panel Discussion - Ehsan Samei; Dianna D. Cody / Christoph Hoeschen; Michael F. McNitt-Gray / Ehsan Samei
2012 Medical Imaging 2012: Physics of Medical Imaging

San Diego, CA Feb 5-9
Vol. 8313 909 papers (233 in Physics) Attendance: ?

Sponsors, Co-Sponsors & Supporting Organizations

SPIE; AAPM; APS; CARS; MIPS; RSNA; SIIM; SMI; WMIS; DICOM

Chairs

Norbert J. Pelc, Robert M. Nishikawa, Bruce Whiting

Program Committee

Hilde Bosmans; Guang-Hong Chen; Dianna D Cody; Mats E Danielsson; Maria Drangova; Thomas G. Flohr; Stephen J. Glick; Michael Grass; Christoph Hoeschen; Marc Kachelriess; Karim S Karim; Hee-Joung Kim; Despina Kontos; Iacovos S. Kyprianou; Joseph Y Lo; Jinyi Qi; John A Rowlands; John M Sabol; Taly G. Schmidt; Jeffrey H. Siewerdsen; Anders Tingber; John Yorkston

Sessions

Keynote and 3D Breast Imaging - Norbert J. Pelc; Robert M. Nishikawa
3D Breast Imaging - Hilde Bosmans; Joseph Y. Lo
Breast Multi-Energy/Photon Counting - Mats E. Danielsson; Stephen J. Glick
Mammography - Anders Tingber; Despina Kontos
X-Ray Imaging - Hee-Joung Kim; Karim S. Karim
Small Animal Imaging - John Yorkston; Maria Drangova
Photon Counting Systems and Techniques - Taly G. Schmidt; Jeffrey H. Siewerdsen
General Radiography and Fluoroscopy - John A. Rowlands; Hee-Joung Kim
Cone Beam CT - Iacovos S. Kyprianou; John Yorkston
CT - Dianna D. Cody; Marc Kachelriess
CT Detection Performance - Jinyi Qi; Bruce R. Whiting
Dose - Christoph Hoeschen; Dianna D. Cody
Reconstruction I & II - Guang-Hong Chen; Michael Grass/ Thomas Flohr; Jeff Siewerdsen
Tomosynthesis Reconstruction - John M. Sabol; Iacovos S. Kyprianou

<table>
<thead>
<tr>
<th>Session Code</th>
<th>Session Title</th>
<th>Co-Chairs</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>8314</td>
<td>Image Processing</td>
<td>David R. Haynor, Sebastien Ourselin</td>
<td>185</td>
</tr>
<tr>
<td>8315</td>
<td>Computer-Aided Diagnosis</td>
<td>Bram van Ginneken, Carol L. Novak</td>
<td>129</td>
</tr>
<tr>
<td>8316</td>
<td>Image-Guided Procedures, Robotic Interventions and Modeling</td>
<td>David R. Holmes III, Kenneth H. Wong</td>
<td>123</td>
</tr>
<tr>
<td>8317</td>
<td>Biomedical Applications in Molecular, Structural, and Functional Imaging</td>
<td>Robert C. Moth, John B. Weaver</td>
<td>78</td>
</tr>
<tr>
<td>8318</td>
<td>Image Perception, Observer Performance, and Technology Assessment</td>
<td>Craig K. Abbey, Claudia Mello-Thoms</td>
<td>66</td>
</tr>
<tr>
<td>8319</td>
<td>Advanced PACS-based Imaging Informatics and Therapeutic Applications</td>
<td>William W. Boorin, Brent J. Liu</td>
<td>38</td>
</tr>
<tr>
<td>8320</td>
<td>Ultrasonic Imaging, Tomography, and Therapy</td>
<td>Johan G. Bosch, Marvin M. Doyley</td>
<td>57</td>
</tr>
</tbody>
</table>

Proc. of SPIE Vol. 8313 831301-45
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAMI</td>
<td>Association for the Advancement of Medical Instrumentation</td>
</tr>
<tr>
<td>AAPM</td>
<td>American Association of Physicists in Medicine</td>
</tr>
<tr>
<td>ACR</td>
<td>American College of Radiology</td>
</tr>
<tr>
<td>APS</td>
<td>American Physiological Society</td>
</tr>
<tr>
<td>ARRS</td>
<td>American Roentgen Ray Society</td>
</tr>
<tr>
<td>ASNR</td>
<td>American Society of Neuroradiology</td>
</tr>
<tr>
<td>BIOS</td>
<td>Biomedical Optics Society</td>
</tr>
<tr>
<td>BRH</td>
<td>Bureau of Radiological Health, Department of Health, Education And Welfare</td>
</tr>
<tr>
<td>CARS</td>
<td>Computer Assisted Radiology and Surgery</td>
</tr>
<tr>
<td>CDRH</td>
<td>Center for Devices and Radiological Health, FDA</td>
</tr>
<tr>
<td>DICOM</td>
<td>The DICOM Standards Committee</td>
</tr>
<tr>
<td>EFOMP</td>
<td>European Federation of Organizations for Medical Physics</td>
</tr>
<tr>
<td>EMBS</td>
<td>IEEE Engineering in Medicine and Biology Group</td>
</tr>
<tr>
<td>EMBS</td>
<td>IEEE—The Institute of Electrical and Electronics Engineers/Engineering in Medicine and Biology Society</td>
</tr>
<tr>
<td>IEEE-CS</td>
<td>IEEE Computer Society, Technical Committee on Computational Medicine</td>
</tr>
<tr>
<td>IRS</td>
<td>Institute for Regulatory Science</td>
</tr>
<tr>
<td>IS&T</td>
<td>The Society for Imaging Science and Technology</td>
</tr>
<tr>
<td>JPL</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>MIPS</td>
<td>Medical Image Perception Society</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturers Association/Diagnostic Imaging and Therapy, Systems Division</td>
</tr>
<tr>
<td>OSA</td>
<td>The Optical Society of America</td>
</tr>
<tr>
<td>RISC</td>
<td>Radiology Information System Consortium</td>
</tr>
<tr>
<td>RSNA</td>
<td>Radiological Society of North America</td>
</tr>
<tr>
<td>SCAR</td>
<td>Society for Computer Applications in Radiology</td>
</tr>
<tr>
<td>SIIM</td>
<td>Society for Imaging Informatics in Medicine</td>
</tr>
<tr>
<td>SMII</td>
<td>The Society for Molecular Imaging</td>
</tr>
<tr>
<td>SNM</td>
<td>The Society of Nuclear Medicine</td>
</tr>
<tr>
<td>SPIE</td>
<td>The Society of Photo-Optical Instrumentation Engineers</td>
</tr>
<tr>
<td>SPSE</td>
<td>The Society of Photographic Scientists and Engineers</td>
</tr>
<tr>
<td>SRE</td>
<td>Society for Radiological Engineering</td>
</tr>
<tr>
<td>UWMS</td>
<td>University of Wisconsin Medical School</td>
</tr>
<tr>
<td>WMIS</td>
<td>World Molecular Imaging Society</td>
</tr>
</tbody>
</table>